Pneumatics/Compressed Air Systems

Dr. Md. Zahurul Haq, Ph.D., CEA, FBSME, FIEB

Professor

Department of Mechanical Engineering
Bangladesh University of Engineering & Technology (BUET)
Dhaka-1000, Bangladesh

http://zahurul.buet.ac.bd/

Training on

Energy Efficiency and Conservation

conducted by

Bangladesh Power Management Institute (BPMI)

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

14 - 29 May. 2024

1/20

Overview

- 1 Pneumatic/Compressed-Air Systems (CAS)
- 2 Energy Balance of CAS System
- 3 CAS: Efficiency Issues

Compressed Air System (CAS)

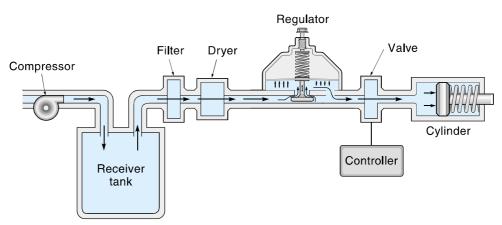
Installation

- Unique applications
- 10 x more expensive than electricity
- Leakages
- Pressure drops, poor pressure control
- Compressors not matched to demand
- Misconceptions about cost: Air is NOT free
- Heat recovery opportunities ignored

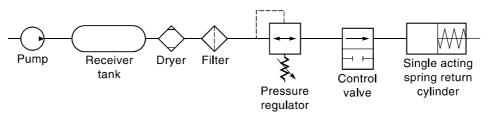
© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

7% 2%
Capital 18%
T1160
Energy 73%

Maintenance

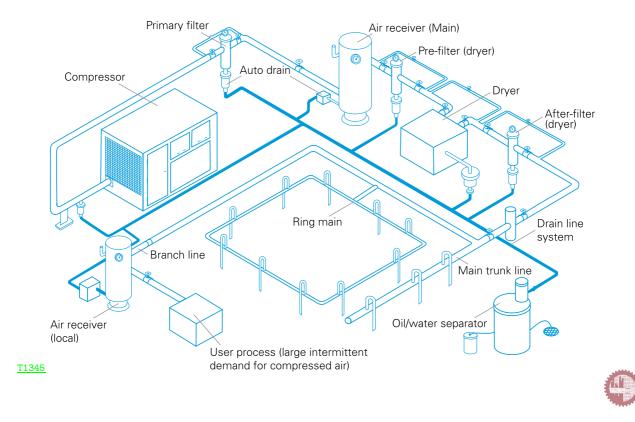


14 - 29 May. 2024


3 / 20

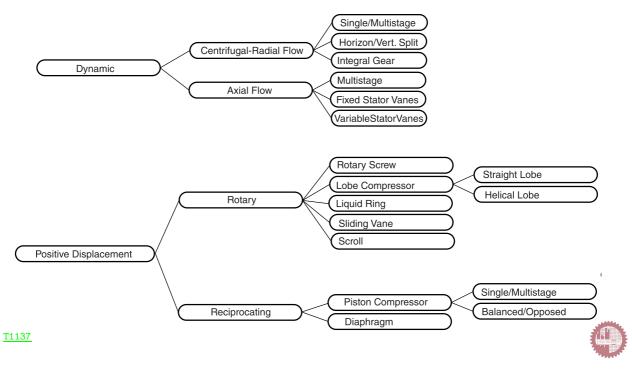
Pneumatic/Compressed-Air Systems (CAS)

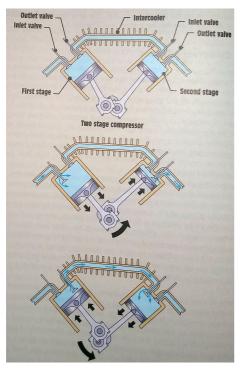
Components of CAS



(a) Diagram

T1739


(b) Symbolic diagram

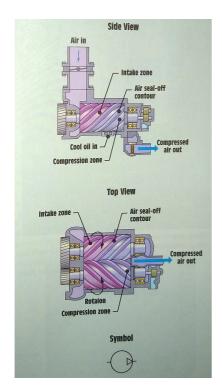

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems 14 - 29 May. 2024 5/20

Pneumatic/Compressed-Air Systems (CAS)

Compressor Classifications

Reciprocating Compressor

T1740

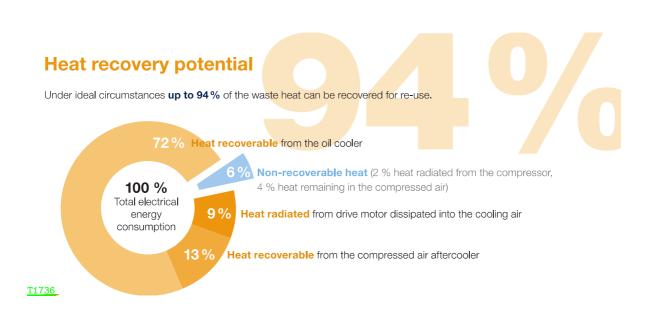

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

14 - 29 May. 2024

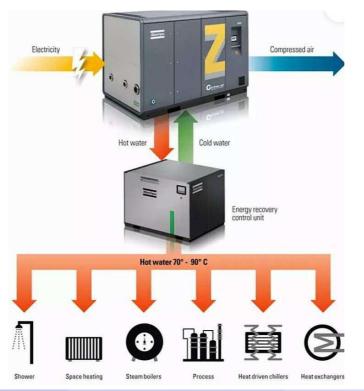
7/20

Pneumatic/Compressed-Air Systems (CAS)

Screw Compressor

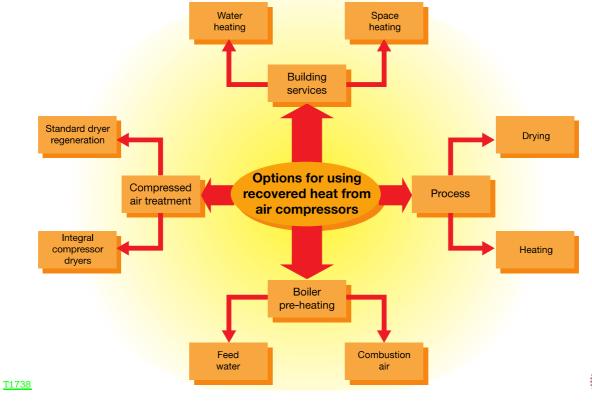

T1742

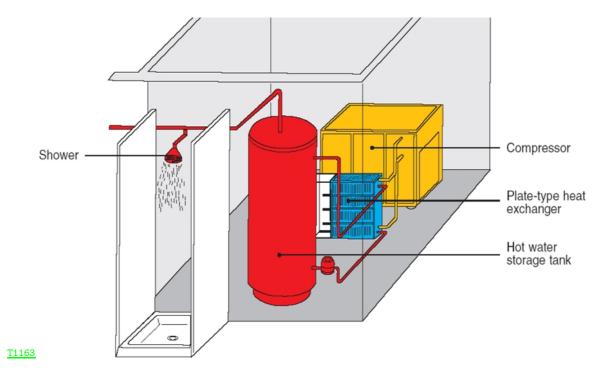
Energy Conversion in CAS System


© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems 14 - 29 May. 2024 9/20

Energy Balance of CAS System

Typical Energy Recovery Applications


T1737


© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

14 - 29 May. 2024

11 / 20

Energy Balance of CAS System

Heat recovery for shower water heating

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

14 - 29 May. 2024

13 / 20

CAS: Efficiency Issues

Compressed Air - survey results

- 600 compressors in 8 countries
- Average size 300 kW (10 5500 kW)
- Leaks were 20% ave
- Savings potential was 30% ave
- 90% pressure too high
- 80% over capacity
- 70% air treatment problems
- 20% undersized pipes

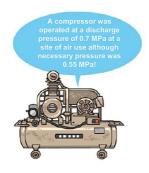
Plenty of opportunities to save energy / costs

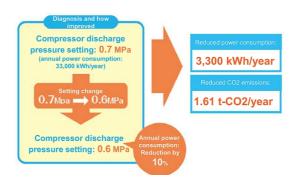
Compressed-Air Systems: Inefficiencies

- Leakage
- High pressure drops
- Unsuitable applications
- Poor pressure control
- Compressors not matched to demand
- Frequent start-ups and unloaded running
- Heat recovery opportunities ignored
- Unsuitable air treatment

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

14 - 29 May. 2024


15 / 20


CAS: Efficiency Issues

- Rule of thumb 6 m/s max
- Large radius elbows
- Smooth internal walls
- Ring main design
- Adequate receiver volume
- Receivers especially for pulsating loads
- Operate at the minimum pressure required for plant to operate correctly
- 1 bar pressure reduction gives 6-9% of cost reduction
- Adjust pressure difference for pressure switches to 0.5 bar max
- Consider electronic sequence controller and pressure transducer for multi-compressor sites

- Leak reduction is very low-cost opportunity
- 20% savings of total running cost is often achievable
- Air Leakage typical culprits
 - Leaking hoses, couplings
 - Condensate drains, valves
 - Pipes, joints and flanges
 - Pressure regulators
 - Lack of interlocked isolation valves on machines
 - ▶ Air tools left connected when not in use

T1463

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems

14 - 29 May. 2024

17 / 20

CAS: Efficiency Issues

Energy saving opportunities for a typical industrial CA system

	Potential savings ²	Investment ³
Management Actions		
Raise the awareness of all users to the proper use of compressed air	10-15%	Low
Develop and implement a maintenance programme for the whole system	5-8%	Low
Install metering and implement monitoring	5-10%	Medium
Use only trained and competent personnel for installation, servicing and system upgrades	5-10%	Low
Develop and implement a purchasing policy	3-5%	Low
Technical Actions		
Implement a leak reporting and repair programme	20-40%	Low
Do not pressurise the system during non-productive periods	2-10%	Low
Fit dryer controls (refrigerant and desiccant)	5-20%	Medium
Install compressor drive and system control measures	5-15%	Medium
Install heat recovery measures where appropriate	Up to 75 %	Medium

Operating at 7 bar(g) (700kPa(g)) with an output of 500 litres/s

 $\underline{T1346}$ 3Low = less than £2,000; Medium = £2,000-£10,000

²The percentage figures given are indicative, are not cumulative and will vary with each system

CAS: Efficiency Issues

Inappropriate uses of compressed air and alternatives

Inappropriate use of compressed air	Alternative
Ventilation	Fans, blowers
Liquid agitation	Mechanical stirrer or blower
Cleaning down workbenches, floors and personnel	Brushes, vacuum cleaner
Rejecting products off a process line	Mechanical arm
Transporting powder at low pressure	Blower

Annual cost of air leaks

Hole diameter (mm)	Air leakage at 7 bar(g) (700kPa(g))		Power to	Cost of leak³ (£/year)	
	litres/s	cfm¹	air leaks² (kW)	48 hours/week	120 hours/week
0.50	0.20	0.42	0.06	7.2	18
1.5	1.8	3.8	0.54	65	160
3.0	7.1	15	2.1	250	630
6.0	28	59	8.4	1,000	2,500

¹ Cubic feet per minute ² Based on 300W/litre

T1347 Based on £0.05/kWh

19 / 20

© Dr. Md. Zahurul Haq (BUET) Pneumatics/Compressed Air Systems 14 - 29 May. 2024

CAS: Efficiency Issues

Thanks a Lot

