Waste Heat Recovery Systems

Dr. Md. Zahurul Haq, Ph.D., CEA, FBSME, FIEB

Professor

Department of Mechanical Engineering
Bangladesh University of Engineering & Technology (BUET)
Dhaka-1000, Bangladesh

http://zahurul.buet.ac.bd/

Training on
Energy Efficiency and Conservation

conducted by

Bangladesh Power Management Institute (BPMI)

© Dr. Md. Zahurul Haq (BUET)

Waste Heat Recovery Systems

14 - 29 May. 2024

1/16

Overview

- Waste Heat Recovery
- 2 WHR Applications

Factors Affecting Waste Heat Recovery

- Temperature of waste heat source
- Minimum temperature to which waste heat can be cooled
- Temperature to which the designed fluid is to be heated
- Flow rate of the fluid
- Chemical composition of waste fluid
- Properties of waste fluid (C_p, μ, ρ, k)
- Corrosive elements in the exhaust fluid

© Dr. Md. Zahurul Haq (BUET)

Waste Heat Recovery Systems

14 - 29 May. 2024

3 / 16

Waste Heat Recovery

Classifications of WHR Equipment

- Gas-to-gas heat exchanger (Graphite heat exchangers, stack-type recuperators, direct contact recuperator, plate fin (ceramic and metal)heat exchangers and ceramic tubes)
- Gas-to-liquid heat exchanger (waste heat boilers, economizers and power generators)
- Liquid-to-liquid heat exchanger (shell-and-tube, spiral, coil, finned-tube, plate-and-frame (plate), and run-around heat exchangers)
- Other low-temperature WHR equipment (heat pumps, and heat pipes)

Gas Turbine Cycle

WHR Applications

Rankine Cycle

Combined Gas Turbine + Rankine Cycle

© Dr. Md. Zahurul Haq (BUET)

Waste Heat Recovery Systems

14 - 29 May. 2024

7/16

WHR Applications

Waste Heat Recovery Boiler

Engine Energy Balance

© Dr. Md. Zahurul Haq (BUET) Waste Hear

Waste Heat Recovery Systems

14 - 29 May. 2024

9/16

WHR Applications

Engine Waste Heat Recovery using ORC

T1745

Typical WHR

Example sizes for custom-built CHP units

	Gas-turbine CHP				CCGT CHP		
Electricity output (MW)	1.1	4.9	9.7	31.0	53.0	99.8	316.0
Heat output (MW)	1.8	7.2	14.5	36.5	40.5	99.3	205.3
Fuel input (MW)	4.3	16.3	34.0	96.1	134.3	271.6	686.4

T1746

© Dr. Md. Zahurul Haq (BUET)

Waste Heat Recovery Systems

14 - 29 May. 2024

11 / 16

WHR Applications

Typical sizes for packaged CHP units

		Gas-engi	ne CHP	Small-scale gas turbine CHP				
	Electricity output	60kW	100kVV	300kW	600kVV	1,000kW	60kW	100kW
.7	Heat output	115k V V	130kW	430kW	880kW	1,300kW	100kW	150kW
	Fuel input	215kW	310kVV	990kW	1,950k V V	3,000kW	280kW	350kW

T1747

Combined Heating and Power

© Dr. Md. Zahurul Haq (BUET)

Waste Heat Recovery Systems

14 - 29 May. 2024

13 / 16

WHR Applications

ORC + Absorption Refrigeration System

<u>T1157</u>

Combined Heating, Cooling and Power

• Overall efficiency is further improved by tri-generation - using additional absorption chillers to convert waste heat into cooling.

WHR Applications

Thanks a Lot

