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General System Modelling & Response

Basic System Models

Modelling is the process of representing the behaviour of a system

by a collection of mathematical equations and logics. It is

comprehensively utilized to study the response of any system.

Response of a system is a measure of its fidelity to its purpose.

Simulation is the process of solving the model and it is performed

using computer(s).

Equations are used to describe the relationship between the input

and output of a system.

Input =⇒ Governing Equations =⇒ Output

Analogy approach is widely used to study system response.
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General System Modelling & Response

System Response

Response is a measure of a system’s fidelity to purpose.

1 Amplitude response:
◮ A linear response to various input amplitudes within range.
◮ Beyond the linear range, the system is said to be over-driven.

2 Frequency response: is the ability of the system to treat all

frequencies the same so that the gain amplitude remains the same

over the frequency range desired.

3 Phase response: is important for complex waveforms. Lack of

good response may result in severe distortion.

4 Delay, Rise time, Slew rate:
◮ Delay or rise time is required to respond to an input quantity.
◮ Slew rate is the maximum applicable rate of change.
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General System Modelling & Response

Step and Harmonic Inputs

step function: f (t) =

{
0 at t ≤ 0

A for t > 0

harmonic function: f (t) =

{
0 at t ≤ 0

A sinωt for t > 0

0

0

A

(b) Harmonic input(a) Step input

f (
t)

t

Input, f(t)

0

0

A
f(t)

f (
t)

t

T= 2 /

T854

Step and harmonic inputs are widely used to analyse system response.
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General System Modelling & Response

T1988

A Few Input Functions: (a) Step; (b) Ramp; (c) Parabolic; (d) Pulse;

(e) Impulse; (f) Sinusoidal.
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General System Modelling & Response

Bode Diagram

Frequency response of a system is described by the set of values of

gain (Ga) and phase angle (φ) when a sinusoidal input is varied

over a range of frequencies (ω).

Bode diagram is a pair of graphs which consists of two plots:
1 Logarithmic gain, L(ω) ≡ 20 log

10
Ga (ω) vs. log

10
(ω), and

2 Phase angle, φ(ω) vs. log
10
(ω).

The vertical scale of the amplitude Bode diagram is in decibels

(dB), where a non-dimensional frequency parameter such as

frequency ratio, (ω/ωn ), is often used on the horizontal axis.
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General System Modelling & Response

T1994

T1995
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General System Modelling & Response

Transfer Function (TF)

Transfer function of a linear system, G(s), is defined as the ratio

of the Laplace transform (LT) of the output variable,

X (s) ≡ L{x (t)}, to the LT of the input variable, F (s) ≡ L{f (t)},
with all the initial conditions are assumed to be zero.

G(s) ≡ X (s)
F (s)

◦ The Laplace operator, s ≡ σ+ jω, is a complex variable. For

steady-state sinusoidal input, σ = 0, and system response can be

evaluated by setting s = jω.
◦ Amplitude gain, Ga(ω) ≡ |G(jω)|

◦ Phase lag, φ(ω) ≡ ∠G(jω)

F (s) −→ G(s) −→ X (s) :=⇒ x (t) = f (t)× Ga∠φ

© Dr. Md. Zahurul Haq (BUET) System Dynamics RME 3204 (2025) 9 / 67

General System Modelling & Response

Time-domain Frequency-domain

Differential Equation Algebraic Equation

Input, f(t)

Output, x(t)

Input, F (s)

Output, X(s)

L{·}

L−1{·}

Calculus Algebra
⊲ Multiplication
⊲ Division
⊲ Exponentiation

⊲ Addition
⊲ Subtraction
⊲ MultiplicationT861
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General System Modelling & Response

Important Laplace Transform Pairs

f (t) F (s)

δ(t) 1

tn n
sn+1

Step function, A A/s

e−at 1
s+a

sinωt ω
s2+ω2

cosωt s
s2+ω2

f ′(t) sF (s) − f (0)

f ′′(t) s2F (s) − sf (0) − f ′(0)
ωn√
1−ζ2

e−ζωn t sinωn

√
1 − ζ2 t , ζ < 1 ω2

n
s2+2ζωn s+ω2

n
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General System Modelling & Response

Modelling of a General System

The response of a system, i.e., output, x (t), when subjected to an

input forcing function, f (t), may be expressed by a linear ordinary

differential equation with constant coefficients of the form:

an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · · + a2

d2x

dt2
+ a1

dx

dt
+

0th order︷ ︸︸ ︷
a0x = f (t)

︸ ︷︷ ︸
1st order︸ ︷︷ ︸

2nd order

f (t) ≡ Input quantity imposed on the system,

x (t) ≡ Output or the response of the system,

a ’s ≡ Physical system parameters, assumed constants.

# Order of a system is designated by the order of the DE.
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General System Modelling & Response Zeroth Order System

Zeroth Order System

a0x = f (t) :=⇒ x (t) = k f (t)

k ≡ 1
ao

≡ Static sensitivity or gain: the scaling factor between the

input and the output. For any-order system, it always has the

same physical interpretation, i.e., the amount of output per unit

input when the input is static and under such condition all the

derivative terms of general equation are zero.

No equilibrium seeking force is present.

Output follows the input without distortion or time lag.

System requires no additional dynamic considerations.

Represents ideal dynamic performance.

Example: Potentiometer, ideal spring etc.
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General System Modelling & Response Zeroth Order System

0

0

A

Response, x(t)

(b) Harmonic input(a) Step input

f (
t)

t

Input, f(t)

0

0

A

x(t)

f(t)

f (
t)

t

T855

Zero-order instrument’s response for step and harmonic inputs (for

k = 0.75).
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General System Modelling & Response First Order System

First Order System

a1
dx
dt + a0 x = f (t) :=⇒ τ dx

dt + x = k f (t)

k ≡ 1/ao ≡ static sensitivity,

τ ≡ a1/ao ≡ time-constant.

ao ⇐⇒ dissipation (electric or thermal resistance).

a1 ⇐⇒ storage (electric or thermal capacitance).
# Example: Thermometer, capacitor etc.

Time constant, τ has the dimension of time, while the static

sensitivity, k has the dimension of output divided by input.

When τ → 0: the effect of the derivative terms becomes negligible

and the governing equation approaches to that of a zero-order

system.
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General System Modelling & Response First Order System

◮ Consider a thermocouple initially at temperature, T is suddenly

exposed to an environment at T∞.

T864

h ≡ convective heat transfer coefficient,

A ≡ heat transfer surface area,

m ≡ mass of mercury + bulb,

C ≡ specific heat of mercury + bulb.

Q̇in = hA [T∞ − T (t)] = mC
dT (t)

dt

τ
dT (t)

dt + T (t) = T∞

Time constant, τ ≡ mC
hA

Static sensitivity, k = 1.0

m ↑ C ↑ h ↓ A ↓ =⇒ τ ↑
Systems with small τ  good dynamic response.
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General System Modelling & Response First Order System

Response of a 1st Order System: Step Input

x = xo , f = 0 : t = 0; f (t) = A : t > 0

τ
dx

dt
+ x = k f (t)

=⇒ x (t) = (xo − Ak) exp(−t/τ)︸ ︷︷ ︸
transient response

+ Ak︸ ︷︷ ︸
steady−state response

◮ x (t → ∞) = Ak = x∞ ⇐= Steady-state Response

◮ Error, em = x∞ − x (t) = (x∞ − xo)e
−t/τ

◮ Non-dimensional Error, em/(x∞ − xo) = e−t/τ
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General System Modelling & Response First Order System

. . . contd

◮ Non-dimensional response, M (t) = x (t)−xo

x∞−xo
= 1.0 − exp(−t/τ)
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General System Modelling & Response First Order System

. . . contd.

Time Constant, τ - time required to complete 63.2% of the process.

Rise Time, tr - time required to achieve response from 10% to 90%

of final value.

# For first order system, tr = 2.31τ − 0.11τ = 2.2τ.

Settling Time, ts - the time for the response to reach, and stay

within 2% of its final value.

# For first order system, ts = 4τ.

Process is assumed to be completed when t ≥ 5τ.

Faster response is associated with shorter τ.
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General System Modelling & Response First Order System

Response of a 1st Order System: Harmonic Input

If the governing equation for first-order system is solved for harmonic

input and x |t=0 = 0, the solution is:

x (t)

Ak
=

ωτ

1 + (ωτ)2
exp(−t/τ)

︸ ︷︷ ︸
transient response

+
1

√

1 + (ωτ)2
sin(ωt + φ)

︸ ︷︷ ︸
steady−state response

where, φ ≡ tan−1(−ωτ) ≡ phase lag. Hence, time delay, ∆t , is

related to phase lag as:

∆t =
φ

ω

For ωτ >> 1, response is attenuated and time/phase is lagged from

input, and for ωτ << 1, the transient effect becomes very small and

response follows the input with small attenuation and time/phase lag.
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General System Modelling & Response First Order System

Ideal response (without attenuation and phase lag) is obtained

when the system time constant, τ is significantly smaller than the

forcing element period, T ≡ 2π/ω.

As t → ∞, the steady-state solution:

x (t)|s =
Ak

√

1 + (ωτ)2
sin(ωt + φ) = Ga f (t)∠φ

Hence, Ga ≡ k/
√

1 + (ωτ)2 ≡ steady-state gain.

The attenuated steady-state response is also a sine wave with a

frequency equal to the input signal frequency, ω, and it lags

behind the input by phase angle, φ.
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General System Modelling & Response First Order System

Thermometer (τ = 10s), initially at 0oC(ω = 0.25, T = 8π, Ga = 0.37).
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T857
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General System Modelling & Response First Order System
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Effects of time constant on system response.

© Dr. Md. Zahurul Haq (BUET) System Dynamics RME 3204 (2025) 23 / 67

General System Modelling & Response First Order System

. . . contd.

Unit τ [s] τ/T φ [deg] ∆t [s] Ga

01 01 0.04 -14.0 -0.98 0.97

02 05 0.2 -51.3 -3.58 0.62

03 50 2.0 -85.4 -5.96 0.08

Response to harmonic input is
◮ at same frequency,
◮ with a phase shift (time lag), and
◮ reduced amplitude (attenuation).

The larger the time constant, the greater the time lag &

amplitude decrease (attenuation).
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General System Modelling & Response First Order System

TF of a 1st Order System

τ
dx

dt
+ x = k f (t)

dnx
dtn =⇒ snX (s), f (t) =⇒ F (s).

⇒ τsX (s) + X (s) = k F (s)

⇒ X (s)
F (s) =

k

τs+1

F (s) ==⇒ k

τs+1 ==⇒ X (s)

s ⇐= jω

Ga = |G(jω)| =
∣

∣

∣

k

jωτ+1

∣

∣

∣
= k√

1+(ωτ)2

φ = ∠G(jω) = tan−1(−ωτ)
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General System Modelling & Response First Order System

Bode Diagram of 0th & 1st Order Systems
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General System Modelling & Response First Order System

T2006

20 log|Ga | =






0 for ωτ << 1,

3.01 dB for ωτ = 1,

−20 log(ωτ) for ωτ >> 1.
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General System Modelling & Response Second Order System

Mechanical System Elements

T1991

Mechanical systems: (a) spring, (b) dash-pot, (c) mass.
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General System Modelling & Response Second Order System

(a) Spring

k Spring

+ ve

x(t)
f(t)

x(t)

Spring

f(t)

x(t)

T848

f (t) = k x (t)

F ≡ Force (tension or compression),

x ≡ Displacement (extension or compression),

k ≡ Spring constant. The bigger the value of k the greater

the forces required to stretch or compress the spring and

so the greater the stiffness.

© Dr. Md. Zahurul Haq (BUET) System Dynamics RME 3204 (2025) 29 / 67

General System Modelling & Response Second Order System

(b) Dash-pot/Damper

Damper

b

+ ve

x(t)
ẋ(t)

f(t)
x(t)

Damper

f(t)

x(t)

T849

f (t) = −bv = −b dx
dt

F ≡ Force opposing the motion at velocity v ,

b ≡ Damping coefficient. Larger the value of b the greater

the damping force at a particular velocity.
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General System Modelling & Response Second Order System

(c) Mass

f(t)

m

+ ve

x(t)
ẋ(t)
ẍ(t)

m

ẍ(t)
T850

f (t) = ma = m dv
dt = m d2x

dt2

F ≡ Force required to cause acceleration, a ,

m ≡ Mass of the element that is distributed throughout

some volume. Often, it is assumed to be concentrated at a point.
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General System Modelling & Response Second Order System

Spring stores energy when stretched, and the energy is released

when it springs back to its original state.

E =
1

2

f 2

k

Energy is stored in mass when it is moving with a velocity, v , the

energy being referred to as kinetic energy.

E =
1

2
mv2

Dashpot dissipates energy as heat rather than storing it, and

dissipated power, P depends on the velocity, v .

P = bv2
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General System Modelling & Response Second Order System

Second Order System (spring-damper-mass)

f(t) f(t)

kx(t) bẋ(t)

mm

k

Damper

b
Spring

+ ve

x(t)
ẋ(t)
ẍ(t)

f(t) ≡ forcing function

m ≡ mass

k ≡ spring constant

b ≡ damping constant

(a) (b)

m

ẍ(t)

T851

f − k x − b
dx

dt
= m

d2x

dt2
=⇒ m

d2x

dt2
+ b

dx

dt
+ k x = f

ωn ≡
√

k
m ⇐⇒ undamped natural frequency (rad/s),

bc ≡ 2
√

mk ⇐⇒ critical damping coefficient,

ζ ≡ b/bc ⇐⇒ damping ratio.
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General System Modelling & Response Second Order System

Response of a 2nd Order System: Step Input
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General System Modelling & Response Second Order System
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T860

Second-order under-damped response specifications.
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General System Modelling & Response Second Order System

Steady state position is obtained after a long period of time.

Under-damped system (ζ < 1): response overshoots the

steady-state value initially, & then eventually decays to the

steady-state value. The smaller the value of ζ, the larger the

overshoot. The transient response oscillates about the

steady-value and occurs with a period,Td , given by:

Td ≡ 2π

ωd
: ωd ≡ ωn

√

1 − ζ2

Critical damping (ζ = 1): an exponential rise occurs to approach

the steady-state value without any overshoot.

Over-damped (ζ > 1): the system approaches the steady-state

value without overshoot, but at a slower rate.
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General System Modelling & Response Second Order System

TF of a 2nd Order System

a2
d2x
dt2

+ a1
dx
dt + aox = f (t) :=⇒ 1

ω2
n

d2x
dt2

+ 2 ζ
ωn

dx
dt + x = k f (t)

where,

k ≡ 1/ao ≡ static sensitivity,

ωn ≡
√

ao
a2

≡ undamped natural frequency,

ζ ≡ a1
2
√

aoa2
≡ dimensionless damping ratio.

G(s) = 1/k
1

ω2
n
s2+2 ζ

ωn
s+1

=
ω2

n/k

s2+2ζωn s+ω2
n

G(jω) =
1/k

[

1−
(

ω
ωn

)2
]

+j
[

2ζ ω
ωn

]

Ga = |G(jω)| =
1/k

√

[

1−
(

ω
ωn

)2
]2

+4ζ2
(

ω
ωn

)2

φ = ∠G(jω) = tan−1



−
2ζ ω

ωn
[

1−
(

ω
ωn

)2
]
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General System Modelling & Response Second Order System

Response of a 2nd Order System: Harmonic Input
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General System Modelling & Response Second Order System

...contd.

System has a good linearity for low damping ratios (0 < ζ ≥ 0.3)

since the amplitude gain is very nearly unity (Ga ≃ 1).

For large values of ζ, the amplitude is reduced substantially.

The phase shift characteristics are a strong function of frequency

ratio (ω/ωn ) for all frequencies.

As a general rule of thumb, the choice of ζ = 0.707 is optimal since

it results in the best combination of amplitude linearity and phase

linearity over the widest range of frequencies.
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General System Modelling & Response Second Order System

T1986
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General System Modelling & Response Second Order System

Modelling of Rotational Mechanical System

T1992

J
d2θ(t)

dt2
+ D

dθ(t)

dt
+ Kθ(t) = T (t)

T1987
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General System Modelling & Response Electrical & Electromechanical Systems

Modelling of Electrical System (R-L-C system)

T1985

Ld2q(t)
dt2 + R dq(t)

dt + 1
C q(t) = v(t)

Ldi(t)
dt + Ri(t) + 1

C

∫t
o i(t)dt = v(t)

For capacitor, q(t) = Cvc(t)

=⇒ LC d2vc(t)
dt2

+ RC dvc(t)
dt + vc(t) = v(t)

T1984
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General System Modelling & Response Electrical & Electromechanical Systems

LC d2vc(t)
dt2

+ RC dvc(t)
dt + vc(t) = v(t)

→
[

LC s2 + RC s + 1
]

Vc(s) = V (s)

⇒ Vc(s)
V (s) =

1/LC

s2+R
L
s+ 1

LC

Ldi(t)
dt + Ri(t) + 1

C

∫t
o i(t)dt = v(t)

→
[

L s + R + 1
C

1
s

]

I (s) = V (s)

⇒ V (s)
I (s) = L s + R + 1

Cs
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General System Modelling & Response Electrical & Electromechanical Systems

Modelling of DC Motors

T1989

T1990

1 ea(t) = Ra ia(t) + La
dia(t)

dt + vb(t)

2 vb(t) = Kb
dθm (t)

dt

3 Tm (t) = Kt ia(t)

4 Tm (t) = Jm
d2θm (t)

dt2
+ Dm

dθm (t)
dt

⊗

Eliminate ia(t).
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General System Modelling & Response Electrical & Electromechanical Systems

For dc motors, the effects of La are less than Ra , so La → 0.

ea(t) = Kb
dθm (t)

dt + Ra
Kt

Tm (t) = Kb ωm(t) + Ra
Kt

Tm (t)

For dc: motor will turn at constant velocity, ωm and torque, Tm .

Tm (t) = −KbKt
Ra

ωm (t) + Kt
Ra

ea(t) ⇒ Tm = −KbKt
Ra

ωm + Kt
Ra

ea

T1993

Stall torque (ωm = 0):

→ Tstall =
Kt
Ra

ea

No-load speed (Tm = 0):

→ ωno−load = ea
Kb

=⇒ Kt
Ra

= Tstall
ea

=⇒ Kb = ea
ωno−load
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Tm (t) = Jm
d2θm (t)

dt2
+D dθm (t)

dt → Tm(s) = Jms2 θm(s) +Dms θ(s)

ea(t) = Kb
dθm (t)

dt + Ra
Kt

Tm (t) → Ea(s) = Kbs θ(s) + Ra
Kt

Tm (s)

⇒ θm (s)
Ea (s)

=
Kt/RaJm

s2+ s
Jm

(Dm+KbKt/Ra )
= K

s(s+α)

K = Kt
RaJm

: α =
Dm+KbKt/Ra

Jm

DC motor driving a rotational mechanical load

Jm = Ja + JL

(

N1
N2

)2
: Dm = Da + DL

(

N1
N2

)2

T2007
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General System Modelling & Response Electrical & Electromechanical Systems

Example: ⊲ Find a) θm(s)/Ea (s) b) θl(s)/Ea (s).

T2008

Tstall = 500, ωno−load = 50, ea = 100.

⇒ Kt

Ra
= Tstall

ea
= 5, Kb = ea

ωno−load
= 2.

Jm = Ja + JL

(

N1

N2

)2

= 5 + 700(1/10)2 = 12, Dm = Da + DL

(

N1

N2

)2

= 10.

K = Kt

RaJm
= 5/12 = 0.417; α =

Dm+KbKt/Ra

Jm
=

10+5(2)

12
= 1.667.

⇒ θm(s)
Ea(s)

= K
s(s+α)

= 0.417
s(s+1.667)

; θl(s)
Ea(s)

= 0.0417
s(s+1.667)

, as θL(t) = θm(t)(Nm/NL)
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Basic Model Elements

Spring-mass-damper system & analogous RLC circuit

f(t)

m

k

Damper

b
Spring

+ ve

x(t)
ẋ(t)
ẍ(t)

f(t) ≡ forcing function (N)
m ≡ mass (kg)
k ≡ spring constant (N/m)
b ≡ damping constant (N.s/m)
x ≡ displacement (m)
ẋ ≡ dx/dt ≡ velocity (m/s)

v(t) ≡ applied voltage (V)
L ≡ inductance (H)
C ≡ capacitance (F)
R ≡ resistance (Ω)
q ≡ charge (C)
i ≡ dq/dt ≡ current (A)

md2x
dt2

+ bdx
dt
+ kx = f(t)

Ld2q
dt2

+ Rdq
dt
+ 1

C
q = v(t)

L ∼ m,R ∼ b, 1
C

∼ k, v ∼ f

1

ω2
n

d2x
dt2

+ 2 ζ
ωn

dx
dt + x = κf(t)=⇒

L

v(t)

R

C

InductorResistor

Capacitor
i

T852
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Basic Model Elements

General Features

Most system components fit into one of following five types:
1 electrical,
2 mechanical,
3 liquid flow,
4 gas flow, or
5 thermal.

The behaviour of components of one type is analogous to
behaviour of components of any other type. Its is determined by
four elements that are common to 5 types of components:

1 resistance,
2 capacitance,
3 inertia (or inductance or ), and
4 dead-time delay.
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Basic Model Elements

⊙ For each type of component, the four elements are defined in terms

of three variables:
1 The first variable defines a quantity of material, energy, or

distance.
2 The second variable defines a driving force or potential that tends

to move or change the quantity variable.
3 The third variable is time.

Variable

Type of Component Quantity Potential Time

Electrical Charge Voltage Second

Liquid flow Volume Pressure Second

Gas flow Mass Pressure Second

Thermal Heat energy Temperature Second

Mechanical Distance Force Second
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Basic Model Elements Resistance

Resistance

Resistance is an opposition to the movement or flow of material or

energy. It is measured in terms of the amount of potential required to

produce one unit of electric current, liquid flow rate, gas flow rate, heat

flow rate, or velocity.

Electrical resistance is the increase in the voltage across the terminals of

a component required to move one more coulomb/second of charge

through the component.

Liquid flow resistance is the increase in pressure drop between two points

along a pipe required to increase 1 m3/s flow rate through the pipe.

Gas flow resistance is the increase in pressure drop between two points

along a pipe required to increase 1 kg/s flow rate through the pipe.

Thermal resistance is the increase in temperature difference across a wall

section required to increase 1 J/s heat flow through the wall section.

Mechanical resistance is the change in the force applied to an object

required to increase 1 m/s velocity of the object.
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Basic Model Elements Capacitance

Capacitance

Capacitance is measured in terms of the amount of material,

energy, or distance required to make a unit change in potential.

Electrical capacitance is the coulombs of charge that must be

stored in a capacitor to increase its voltage by 1 Volt.

Liquid capacitance is the cubic meters of liquid that must be

added to a tank to increase the pressure by 1 Pascal.

Gas capacitance is the kilograms of gas that must be added to a

tank to increase the pressure by 1 Pascal.

Thermal capacitance is the amount of thermal energy that must

be added to an object to increase its temperature by 1oC.

Mechanical capacitance is the amount of compression of a spring

(in meters) required to increase the spring force by 1 Newton.
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Basic Model Elements Inertia, inertance, or inductance

Inertia, inertance, or inductance

Inertia, inertance, or inductance is an opposition to a change in

the state of motion. It is measured in terms of the amount of

potential required to increase electric current, liquid flow rate, gas

flow rate, or velocity by one unit per second.

Electrical inductance is the increase in voltage across an inductor

required to increase the current by 1 ampere/s.

Liquid flow inertance is the increase in the pressure drop between

two points along a pipe required to accelerate the flow-rate by

1 m3/s/s.

Mechanical inertia is the increase in force required to produce an

acceleration of 1 m/s2.
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Basic Model Elements Inertia, inertance, or inductance

Dead time (td)

Dead time is the time interval between the time a signal appears

at the input of a component and the time the corresponding

response appears at the output.

Dead time occurs whenever mass or energy is transported from

one point to another. It is the time required for the mass or

energy to travel from the input location to the output location.

If v is the velocity of the mass or energy and D is the distance

travelled, dead-time delay (td ) is given by:

td =
D

v

In general: fo(t) = fi(t − td )

© Dr. Md. Zahurul Haq (BUET) System Dynamics RME 3204 (2025) 54 / 67



System Elements Electrical Elements

Electrical Elements

Electrical resistance is that property of material which impedes the

flow of electric current. The unit of electric resistance is the ohm.

T1997

Static resistance, R = e
i

T1998

Dynamic resistance, R = ∆e
∆i = de

di
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System Elements Electrical Elements

Electrical capacitance is the quantity of electric charge (C)

required to make a unit increase in the electrical potential (eV).

The unit of electrical capacitance is the farad (F). Capacitance,

C = ∆q
∆e .

⇒ ∆q = C∆e → ∆q
∆t = i = C ∆e

∆t → dq
dt = i = C de

dt

→ If e = A sinωt → de
dt = ωA cosωt → i = ωCA cosωt

Electrical inductance is the voltage required to produce a unit

increase in electric current each second. The unit of electrical

inductance is the henry (H).

⇒ e = L∆i
∆t = L di

dt

→ If i = A sinωt → di
dt = ωA cosωt → e = ωLA cosωt

Electrical dead-time delay is the delay caused by the time it takes

a signal to travel from the source to the destination. Dead-time

delay of the line is equal to the distance the signal travels (D)

divided by the velocity of propagation (vp).

⇒ td = D
vp
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System Elements Electrical Elements

T1999

Example: ⊲ Determine the dead-time delay of a 600-m-long transmission line
if the velocity of propagation is 2.3 X 108 m/s. [2.61 µs]
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System Elements Liquid Flow Elements

Liquid Flow Elements

Liquid flow resistance is that property of pipes, restrictions , or

valves which impedes the flow of a liquid. It is measured in terms

of the increase in pressure required to make a unit increase in flow

rate. The SI unit is Pa.s/m.

T2000

Laminar flow:

p = RLQ : RL = 128µL
πd4

T2001

Turbulent flow:

p = KtQ
2 : Rt = 2KtQ : Kt =

8ρfl
π2d5

© Dr. Md. Zahurul Haq (BUET) System Dynamics RME 3204 (2025) 58 / 67



System Elements Liquid Flow Elements

Liquid flow capacitance is defined in terms of the increase in

volume of liquid in a tank required to make a unit increase in

pressure at the outlet of the tank.

Liquid capacitance, CL = ∆V
∆p .

∆p = ρg∆H , and ∆H = ∆V
A

⇒ CL = A
ρg

Example: ⊲ A water tank has a diameter of 1.83 m and a height of 3.28 m.
Determine the capacitance of the tank containing water. [2.68×10−4 m3/Pa]
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System Elements Liquid Flow Elements

Liquid flow inertance is measured in terms of the amount of

pressure drop in a pipe required to increase the flow rate by 1 unit

each second.

Liquid inertance, IL = p
∆Q/∆t .

m = ρal : m ≡ mass of fluid in pipe, a ≡ x-sectional area of pipe,

F = pa = m ∆v
∆t : l ≡ length of the pipe,

∆Q = a∆v

⇒ IL = ρl
a

Example: ⊲ Determine the liquid flow inertance of water in a pipe that has a
diameter of 2.1 cm and a length of 65 m. [1.88E+08 Pa/m3/s2]
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Dead time occurs whenever liquid is transported from one point to

another in a pipeline. The dead-time delay (td ) is the distance

travelled (D) divided by the average velocity (v) of the fluid.

td = D
v : v = Q

A .

T2002

Example: ⊲ Liquid flows in a pipe that is 200 m long and has a diameter of 6
em. The flow rate is 0.0113 m3/s. Determine the dead-time delay. [50 s]
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System Elements Gas Flow Elements

Gas Flow Elements

Gas flow resistance is that property of pipes, valves, or restrictions

that impedes the flow of a gas. It is measured in terms of the

increase in pressure required to produce an increase in 1 kg/s gas

flow rate. The SI unit for gas flow resistance is Pa s/kg.

In practice, gas flow is almost always turbulent, and the commonly
used equations apply to turbulent flow. If the pressure drop is less
than 10% of the initial gas pressure, the equation for
incompressible flow gives reasonable accuracy for gas flow.
◮ p = P1 − P2 = KgW

2; W ≡ gas flow rate (kg/s).
◮ Rg = 2KgW
◮ Kg = 8fl

π2d5ρ
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System Elements Gas Flow Elements

Determine Rg at ṁ = 0.6 kg/s.

T2003

Rg = p
∆W = 52000

0.72 = 72222Pa s /kg.
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System Elements Gas Flow Elements

Gas flow capacitance is defined in terms of the increase in the

mass of gas in a vessel required to produce a unit increase in

pressure while the temperature remains constant. The SI unit of

gas flow capacitance is kg/Pa.

Gas capacitance, Cg = ∆m
∆p

Gas law, pV = m Ru
M T → m =

(

1.2×10−4MV
T

)

p

⇒ Cg = 1.2×10−4MV
T

Example: ⊲ A pressure tank has a volume of 0.75 m3. Determine the
capacitance of the tank if the gas is nitrogen at 20oC. [8.6×10−6 kg/Pa]
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Thermal Elements

Thermal resistance is that property of a substance that impedes

the flow of heat. It is measured in terms of the difference in

temperature required to produce a heat flow rate of 1 W.

Thermal resistance, RT = ∆T
Q .

Thermal capacitance is defined in terms of the increase in heat

required to make a unit increase in temperature. The SI unit of

thermal capacitance is J/K. The thermal capacitance (CT ) of an

object is simply the product of the mass (m) of the object times

the heat capacity (c) of its substance.

Thermal capacitance, CT = m c.
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Mechanical Elements
Mechanical resistance (or friction) is that property of a mechanical

system that impedes motion. It is measured in terms of increase in

force required to produce an increase in velocity of 1 m/s. The SI

unit of it is Ns/m.

Mechanical Resistance, Rm = F
v

Mechanical capacitance is defined as the increase in the

displacement of a spring required to make a unit increase in spring

force. The SI unit of mechanical capacitance is the N/m. The

reciprocal of the capacitance is called the spring constant, k.

Mechanical capacitance, Cm = ∆x
δF = 1

k

Mechanical inertia (mass) is measured in terms of the force

required to produce a unit increase in acceleration. It is defined by

Newton’s law of motion, and the term mass is used for the inertia

element.

Fav = m ∆v
∆t → F = m dv

dt
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Mechanical dead time is the time required to transport material

from one place to another.

T2005

Example: ⊲ A belt conveyor is 30 m long and has a belt speed of 3 m/s.
Determine the dead-time delay between the input and output ends of the
belt. [10 s]
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