Energy Auditing: Assessment and Enhancement of Energy Efficiency in Power Plants including Captive Power Plants

Dr. Md. Zahurul Haq, Ph.D., CEA, FBSME, FIEB

Professor

Department of Mechanical Engineering
Bangladesh University of Engineering & Technology (BUET)
Dhaka-1000, Bangladesh

http://zahurul.buet.ac.bd/

Keynote Presentation: Seminar organised by

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

9 October 2025

1/31

Overview

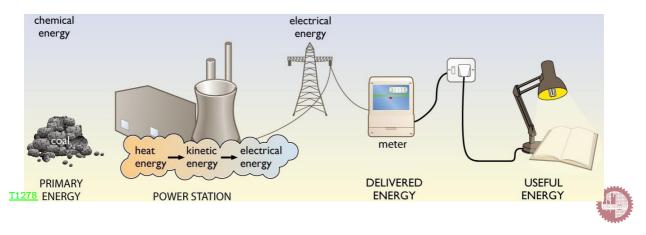
- Energy Conversion Performance Parameters
 - Effect of Parameters on Cycle Performance
 - Vapour Power Cycle
 - Gas Turbines & Combined Cycle
 - Case Study: Combined Cycle Power Plant
- Boiler Audit & Sources of Losses
- 3 Engine Waste Heat Recovery (WHR)

Self Introduction

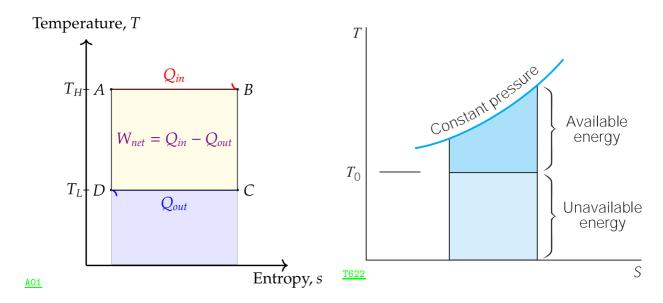
1995 - 1998	Ph.D., The University of Leeds, Leeds, UK.
2004 - to date	Professor, Dept. of Mechanical Engineering, BUET.
2024 - to date	Dean, Faculty of Mechanical Engineering, BUET.
2014 - 2016	Head/Chairman, Dept. of Mechanical Engineering, BUET.
2012 - 2014	Director, Centre for Energy Studies, BUET.
2013 - 2015	Member, WG on Energy & Carbon-Footprint, ISO.
2008 - 2009	Member, Board of Directors, Rupantarita Prakitik Gas Co. Ltd.
2007 - 2015	Member, Project Management Board, Haripur GT Power Station.

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency


9 October 2025

3/31

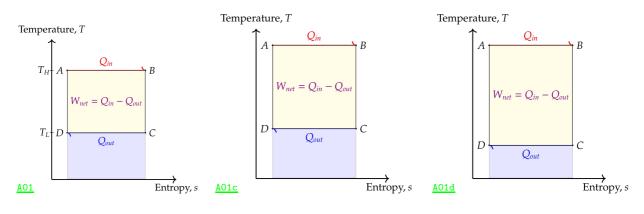

Energy Conversion Performance Parameters

Significance of Effective Use of Energy Resources

Efficiency in energy conversion, as well as an increase in the effective use of renewable energy and waste heat, are critical for ensuring energy security, enhancing industrial productivity, mitigating the effects of global warming, and fulfilling UN's SDG 7.

Effects of Source/Sink Temperatures on Efficiency

$$\eta_{\it th} \equiv rac{W_{\it net}}{Q_{\it in}} = rac{Q_{\it in} - Q_{\it out}}{Q_{\it in}} = 1 - rac{Q_{\it out}}{Q_{\it in}} \sim 1 - rac{T_{\it L,av}}{T_{\it H,av}}$$


© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

9 October 2025

5/31


Energy Conversion Performance Parameters Effect of Parameters on Cycle Performance

$$\eta_{\it th} \equiv rac{W_{\it net}}{Q_{\it in}} = rac{Q_{\it in} - Q_{\it out}}{Q_{\it in}} = 1 - rac{Q_{\it out}}{Q_{\it in}} \sim 1 - rac{T_{\it L,av}}{T_{\it H,av}}$$

Basic Rankine Cycle for Steam Power Plants

 $1 \rightarrow 2$: Isentropic compression in a pump

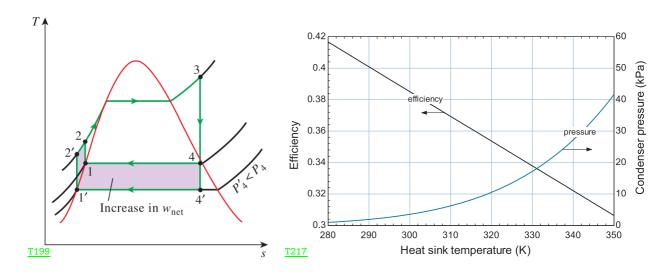
 $2 \rightarrow 3$: Isobaric heat addition in a boiler

 $3 \rightarrow 4$: Isentropic expansion in a turbine

 $4 \rightarrow 1$: Isobaric heat rejection in a condenser

© Dr. Md. Zahurul Haq (BUET)

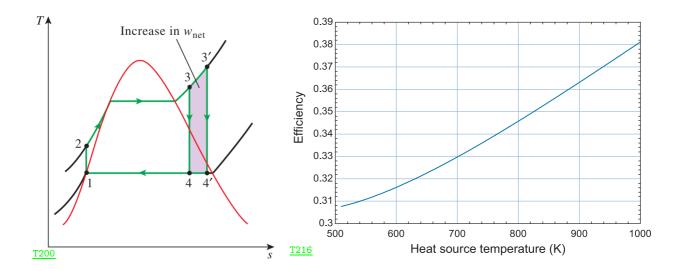
Energy Efficiency


9 October 2025

7/31

Energy Conversion Performance Parameters

Vapour Power Cycle


Steam Power Plants: Effect of Condenser Pressure

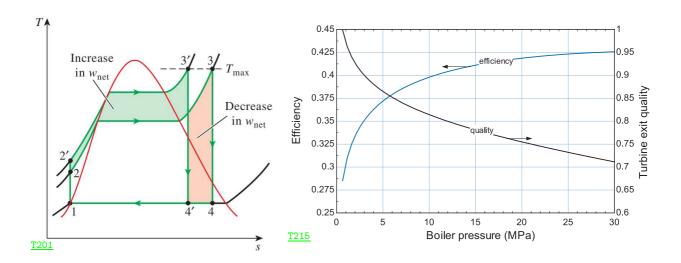
- ullet $P_{cond}=P_{sat}(T_{cond})$: $T_{cond}-T_{atm}\simeq 10-15^{o}{
 m C}.$
- $P_{cond} \downarrow :\Longrightarrow w_{net} \uparrow$, $\eta_{th} \uparrow \& x_4 \downarrow$. Higher moisture decreases turbine efficiency and erodes its blades. In general, $x_4 \geq 0.9$ is maintained. Lower P_{cond} promotes leakage.

Steam Power Plants: Effect of Steam Superheating

- $T_{max} \uparrow : \Longrightarrow w_{net} \uparrow, \ \eta_{th} \uparrow \& x_4 \uparrow.$
- Higher average temperature of heat addition increases η_{th} . T_{max} is limited by metallurgical considerations. In general, $T_{max} = 620^{\circ}$ C.

© Dr. Md. Zahurul Haq (BUET)

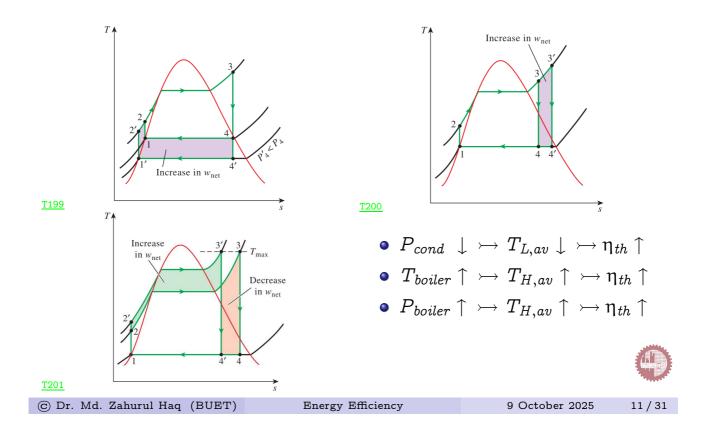
Energy Efficiency


9 October 2025

9/31

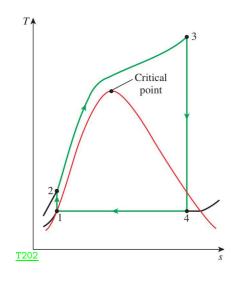
Energy Conversion Performance Parameters

Vapour Power Cycle


Steam Power Plants: Effect of Boiler Pressure

• For fixed $T_{max}: P_B \uparrow : \Longrightarrow \eta_{th} \uparrow \& x_4 \downarrow$. Higher η_{th} is achieved because of higher average temperature of heat addition.

Effects of T & P on Rankine Cycle


Energy Conversion Performance Parameters Vapour Power Cycle

Effects of Operating Parameters on Ideal Rankine Cycle Efficiency

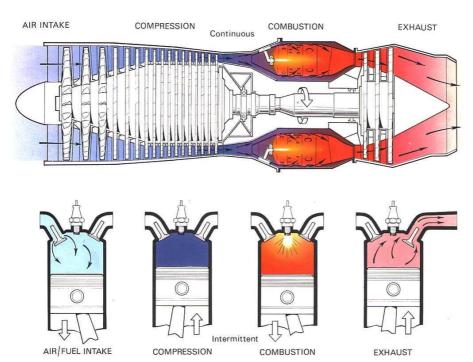
Boiler Pressure	[MPa]	3.0	3.0	3.0	15.0
Max. Temperature	[°C]	350	350	600	600
Cond. Pressure	[kPa]	75	10	10	10
Heat added	[kJ/kg]	2727	2920	3487	3375
Turbine work	[kJ/kg]	713	979	1302	1467
Pump work	[kJ/kg]	3.03	3.02	3.02	15.1
Thermal efficiency	[%]	26.0	33.4	37.3	43.0
x_4	[-]	0.886	0.812	0.914	0.804

Super-critical Rankine cycle

- Some modern power plants operate at $P pprox 30 \text{ MPa} > P_C = 22.06 \text{ MPa}$ and have
 - $ightharpoonup \eta_{th} \sim 40\%$ for fossil-fuel plants,
 - ▶ $\eta_{\it th} \sim 34\%$ for nuclear power plants.
- Lower η_{th} of nuclear power plants are due to lower maximum temperatures used due to safety reasons.

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

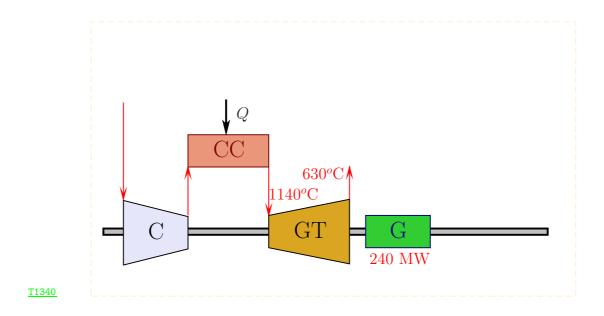

9 October 2025

13 / 31

Energy Conversion Performance Parameters

Gas Turbines & Combined Cycle

Gas Turbines



T371

A comparison between Gas turbine and a piston engine cycle

Gas Turbine

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

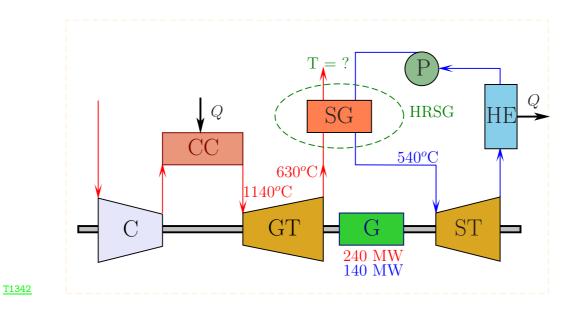
9 October 2025

15 / 31

Energy Conversion Performance Parameters

Gas Turbines & Combined Cycle

Steam Turbine

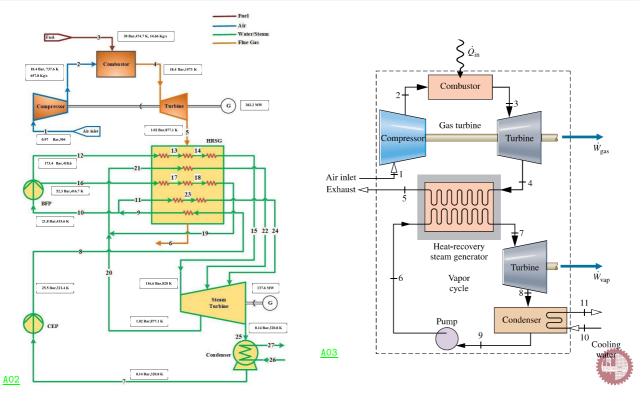


© Dr. Md. Zahurul Haq (BUET)

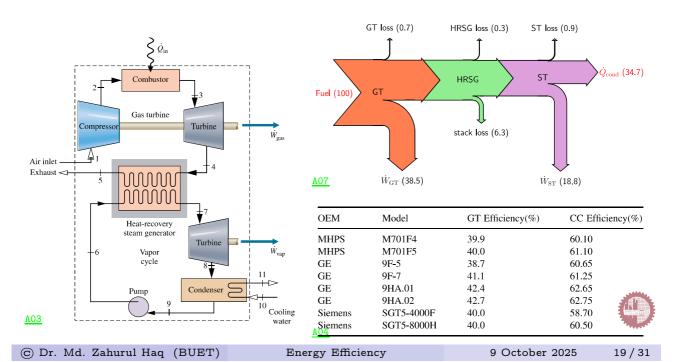
T1341

Combined Cycle

© Dr. Md. Zahurul Haq (BUET)

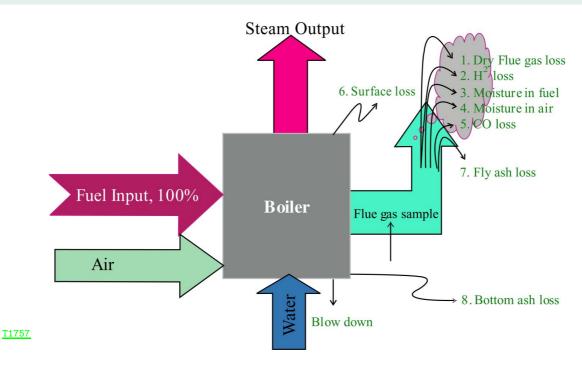

Energy Efficiency

9 October 2025


17/31

Energy Conversion Performance Parameters Case Study: Combined Cycle Power Plant

Case Study: Combined Cycle Power Plant



- $\dot{m}_a = 657.8 \text{ kg/s}, \, \dot{m}_f = 14.66 \text{ kg/s}$
- $\dot{m}_{w,max} = 105.8 \text{ kg/s}, \ \dot{m}_{cw} = 10350 \text{ kg/s}$
- $T_{03} = 1300$ °C, $T_{04} = 604$ °C, $T_{05} = 94$ °C, $T_{07} = 547$ °C, $T_{09} = 47.8$ °C

Boiler Audit & Sources of Losses

Boiler Audit: Sources of Losses

Boiler efficiency = $100 - \sum L_i$

The following losses are applicable to liquid, gas and solid fired boiler

- L_1 Loss due to dry flue gas (sensible heat)
- L_2 Loss due to hydrogen in fuel (H_2)
- L_3 Loss due to moisture in fuel (H_2O)
- L_4 Loss due to moisture in air (H_2O)
- L_5 Loss due to carbon monoxide (CO)
- L_6 Loss due to surface radiation, convection & other losses
- L_7 Unburnt losses in fly ash (carbon)
- \bullet L_8 Unburnt losses in bottom ash (carbon)

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

9 October 2025

21/31

Boiler Audit & Sources of Losses

 L_1 - Loss due to dry flue gas (sensible heat)

$$L_1 = rac{m_{dg}\,C_{p,g}(\,T_f-\,T_a)}{GCV} imes 100$$

- $m_{dq} = \text{Mass of dry flue gas in kg/kg of fuel}$
- $C_{p,g} = \text{Specific heat of flue gas kCal/kg}^{\circ}\text{C}$
- T_f = Flue gas temperature in °C
- T_a = Ambient temperature in °C
- GCV = Gross calorific value of fuel in kCal/kg

$$m_{dg} = \left(rac{A}{F}
ight)_{A,G,D} + 1 - R - M - 9H_2$$

- \bullet R = Ash or residue content of fuel
- \bullet M =moisture content of fuel
- $H_2 = H_2$ content of fuel

 L_2 - Loss due to hydrogen in fuel (H_2)

$$L_2=9H_2\left[rac{585+C_{p,s}(T_f-T_a)}{GCV}
ight] imes 100$$

 L_3 - Loss due to moisture in fuel (H_2O))

$$L_3 = M \left[rac{585 + C_{p,s}(T_f - T_a)}{GCV}
ight] imes 100$$

 L_4 - Loss due to moisture in air (H_2O)

$$L_4 = \omega \left(rac{A}{F}
ight)_{A,G,D} \left[rac{C_{p,s}(T_f-T_a)}{GCV}
ight] imes 100$$

- $C_{p,s} = \text{Specific heat of steam kCal/kg}^{\circ}\text{C}$
- ω = Humidity ratio of air kg-water/kg-dry-air

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

9 October 2025

23 / 31

Boiler Audit & Sources of Losses

 L_5 - Loss due to partial conversion of C to CO

$$L_5 = rac{\% \, CO imes C}{\% \, CO + \% \, CO_2} \left[rac{5654}{GCV}
ight] imes 100$$

 L_6 - Loss due to surface radiation, convection and other unaccounted losses

$$L_{loss} = 0.548 \left[\left(rac{T_s}{55.55}
ight)^4 - \left(rac{T_a}{55.55}
ight)^4
ight] + 1.957 (T_s - T_a)^{1.25} \left[rac{196.85 \, V_m + 68.9}{68.9}
ight]^{0.5} \, \mathrm{W/m^2}$$
 $L_s = rac{L_{loss} imes A}{m_f imes GCV}$

 L_7 - Unburnt losses in fly ash (carbon)

$$L_7 = rac{m_{ extit{fly ash}} imes GCV_{ extit{fly ash}}}{GCV} imes 100$$

 L_8 - Unburnt losses in bottom ash (carbon)

$$L_8 = rac{m_{bottom \;\; ash} imes GCV_{bottom \;\; ash}}{GCV} imes 100$$

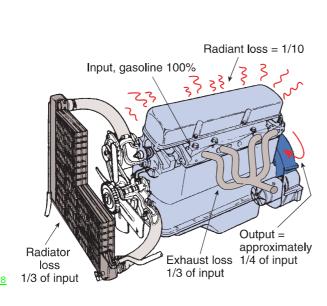
Boiler Efficiency Calculation

=	48
=	4.4
=	36
=	2.6
=	1.1
=	7.3
=	0.6
=	3501 kcal/kg
	= = = = =

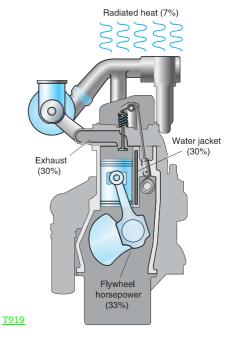
Fuel firing rate		5600 kg/hr
Steam generation rate		21940 kg/hr
Steam pressure		$43 \text{ kg/cm}^2(\text{g})$
Steam temperature		377 °C
Feed water temperature		96 °C
%CO, in Flue gas		14
%CO in flue gas	=	0.55
Average flue gas temperature	=	190 °C
Ambient temperature	=	31 °C
Humidity in ambient air	=	0.0204 kg / kg dry air
Surface temperature of boiler		70 °C
Wind velocity around the boiler		3.5 m/s
Total surface area of boiler		90 m^2
GCV of Bottom ash	=	800 kcal/kg
GCV of fly ash		450 kcal/kg
Ratio of bottom ash to fly ash		90:10

 $[\eta = 100 - (7.1 + 4.37 + 0.82 + 0.25 + 2.2 + 0.37 + 0.62 + 9.98) = 74.4\%$

© Dr. Md. Zahurul Haq (BUET)

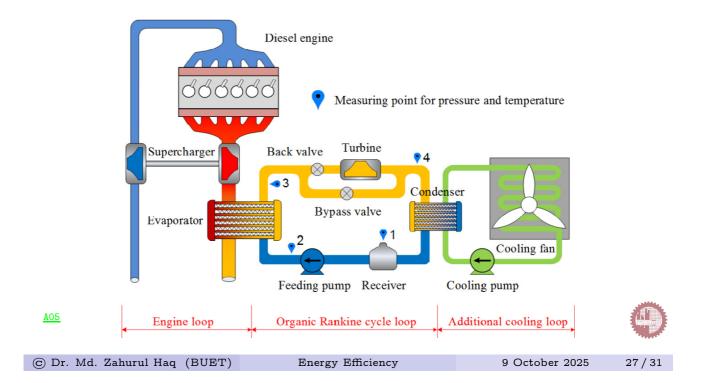

Energy Efficiency

9 October 2025

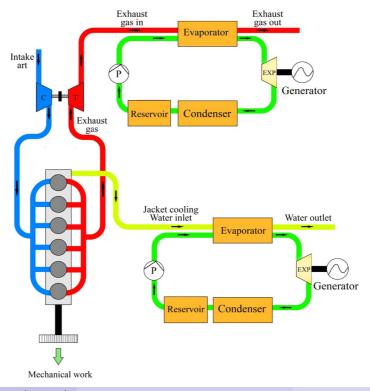

25 / 31

Engine Waste Heat Recovery (WHR)

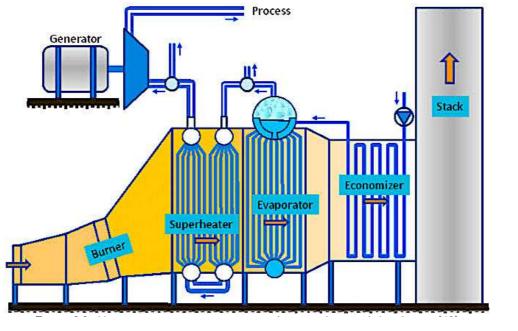
Engine Energy Balance



CI Engine



Engine WHR using ORC


Engine Waste Heat Recovery (WHR)

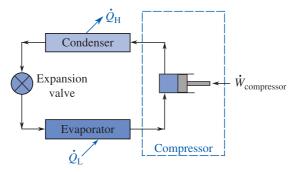
Engine WHR using ORC

T1745

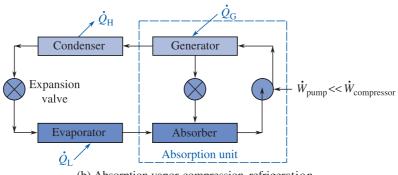
Waste Heat Recovery Boilers

© Dr. Md. Zahurul Haq (BUET)

<u>A06</u>


Energy Efficiency

9 October 2025


29 / 31

Engine Waste Heat Recovery (WHR)

Absorption Chillers using WH

(a) Standard vapor-compression refrigeration.

T272

(b) Absorption vapor-compression refrigeration.

Thanks a Lot!

© Dr. Md. Zahurul Haq (BUET)

Energy Efficiency

9 October 2025

31/31