

Time Value of Money

The Cash Flow Diagram

- Costs (or disbursements) are pointing down.
- Incomes are pointing up.
- Uniform yearly incomes and costs are indicated at the end of the year, even though they may be distributed throughout the year.

A heating system has an initial cost of \$20,000. The yearly operation and maintenance charges are \$1,000. Increased rent results in an extra \$5,000 per year of income. The heating plant has a life of 10 years, at which time it can be sold for \$7,000.

Time Value of Money

Nominal and Effective Interest Rates

© Dr. Md. Zahurul Haq (BUET)

- Interest rates are often quoted as a nominal annual rate.
- If compounding factor is more frequent, the nominal rate does not represent true rate.
- If effective interest rate, i_{eff} for a nominal rate of i for m compounding periods in one year

 $i_{e\!f\!f} = ig(rac{F}{P},rac{i}{m},mig) - 1$

• For example, the effective interest rate for an investment scenario of 6% compounded monthly is,

Engineering Economics

$$i_{eff} = \left(q + \frac{i}{12}
ight)^{12} - 1 = \left(1 + \frac{0.06}{12}
ight)^{12} - 1 = 0.0618 = 6.18\%$$

ME 307 (2024)

5/28

Time Value of Money

Example: > An investment opportunity that provides an annual rate of return of 6% is available. Determine the future value of a \$1,000 investment 10 years from now if the interest is compounded (a) annually and (b) monthly. (a) annually compounded:

- $\left(\frac{F}{P}, i, n\right) = \left(\frac{F}{P}, 0.06, 10\right) = (1 + 0.06)^{10} = 1.79085$
- $F = P\left(\frac{F}{P}, i, n\right) =$ \$ 1000(1.79085) = \$1790.85

(b) monthly compounded: interest rate is divided equally over 12 months. So, i = 0.06/12 = 0.005, and n = (10)(12) = 120.

- $\left(\frac{F}{P}, i, n\right) = \left(\frac{F}{P}, 0.005, 120\right) = (1 + 0.005)^{120} = 1.81940$
- $F = P\left(\frac{F}{P}, i, n\right) =$ \$ 1000(1.81940) = \$1819.40

© Dr. Md. Zahurul Haq (BUET)

From an investment perspective, more frequent compounding results in a larger future sum because the interest is gaining interest.

Engineering Economics

ME 307 (2024)

6/28

Time Value of Money

Example: > Present Values of an Uneven Series by Decomposition into Single Payments

Time Value of Money

Interest Factors for Discrete Compounding

	Name	Converts	Symbol	Computed by	
	Single Payment Compound Amount	P to F	$\left(\frac{F}{P},i,n\right)$	$(1+i)^n$	
	Present Worth	F to P	$\left(\frac{P}{F}, i, n\right)$	$(1+i)^{-n}$	
	Uniform Series Sinking Fund	F to A	$\left(\frac{A}{F}, i, n\right)$	$\frac{i}{(1+i)^n-1}$	
	Compound Amount	A to F	$\left(\frac{F}{A}, i, n\right)$	$\frac{(1+i)^n-1}{i}$	
	Capital Recovery	P to A	$\left(\frac{A}{P}, i, n\right)$	$\frac{i(1+i)^n}{(1+i)^n-1}$	
	Uniform Series Present Worth	A to P	$\left(\frac{P}{A}, i, n\right)$	$\frac{(1+i)^n-1}{i(1+i)^n}$	
<u>T1800</u>	Gradient Present Worth	G to P	$\left(\frac{P}{G},i,n\right)$	$\frac{(1+i)^n - 1}{i^2(1+i)^n} - \frac{n}{i(1+i)^n}$	4
© Dr. Md. Zahurul Haq (BUET)		Engineering	Economics	ME 307 (2024)	16 / 28

Example: \triangleright A mechanical contractor has four employees whose combined salaries through the end of this year are \$250,000. If he expects to give an average raise of 5% each year, calculate the present worth of the employees' salaries over the next 5 years. Let i = 12% per year. [\$985012.74]

Economic Decision Making

Present Worth Analysis

Example: > Lives of 2 alternatives are equal: Two machines are being considered for a manufacturing process. Machine A has an initial cost of \$800 with operating costs of \$600 per year. Machine B costs \$1,000 with operating costs of \$500 per year. Both machines have a 5-year life with no salvage value. If MARR is 15%, compounded annually, which machine should be purchased?

Economic Decision Making

Example: > Two alternatives: Machine X has an initial cost of \$14,000 with a salvage value after 6 years of \$3,000. Machine X results in an annual savings of \$900. Machine Y has an initial cost of \$9,000 and annual savings is \$700. Machine Y has a life of only 3 years, at which time it can be sold for \$2,000. The MARR for this project is 15%. Select suitable machine using a PW analysis.

Annual Cost Analysis

 \Rightarrow The AC method can be used to compare alternatives with unequal economic lives. If the lives are different, the shorter-life alternative will be replaced with identical equipment (unless otherwise specified).

Economic Decision Making

Example: > Two machines are being considered for a manufacturing process. Machine A has an initial cost of \$800 with operating costs of \$600 per year. Machine B costs \$1,500 with operating costs of \$500 per year. Machine A has a 5-year life and Machine B has a 10-year life. Neither machine has a salvage value. If the MARR is 8%, which machine is the best economic alternative? $[AC_A = $800, AC_B = $724.$ Select machine B.]

Economic Decision Making

Example: \triangleright Select a pump based on a 10-year service life if the MARR is 12%.

After 10 years, Pump 1 has salvage value of \$800 after 3 years, and pump 2 has salvage value \$600 after 10 years.

Economic Decision Making Breakeven Analysis and Payback Period TC = FC + VCTotal Ś cost, TC Cost, Variable, VC TC with lowered VC Breakeven with lowered VC Fixed, FC Profit Units, Q maximized Breakeven • r = revenuepoint moves Profit • v = variable cost $Q_{\rm RF}$ $Q_{BE} = \frac{FC}{r-v}$ © Dr. Md. Zahurul Haq (BUET) Engineering Economics ME 307 (2024) 24 / 28

© Dr. Md. Zahurul Haq (BUET)

ME 307 (2024)

23 / 28

Engineering Economics

Economic Decision Making

Example: > Determine the total cost of a diesel generator operating over a 5-year period. Assume, the capital cost of the generator is \$15,000, the annual output is 219 MWh and the maintenance costs are \$500 per annum. The cost of producing each unit of electricity is \$0.035/kWh.

	Item	Type of cost	Calculation	Cost (£)
	Capital cost of generator	Fixed	n.a.	15,000.00
	Annual maintenance	Fixed	£500 imes 5	2500.00
	Fuel cost	Variable	$\textbf{219,000} \times \textbf{0.035}$	7665.00
<u>T1830</u>			Total co	st = 25,165.00
© Dr. Md. Za	hurul Haq (BUET)	Engineering Eco	nomics	ME 307 (202

Economic Decision Making

Example: \triangleright Determine the total cost of a diesel generator operating over a 5-year period. Assume the capital cost of the generator is \$15000 and the maintenance costs are \$500 per annum. The cost of producing electricity is \$0.035/kWh. If electricity is bought from a local utility company costs an average of \$0.061/kWh, determine the break-even point for the generator when:

- average output is 50 kW
- average output is 70 kW

$$Q_{BE} = rac{FC}{r-v}$$

- FC =\$ (15000 + 500 x 5) = \$17500
- r = 0.061/kWh x output
- v = 0.035 / kWh x output
- $Q_{BE,1} = 17500/(0.061 \text{ x } 50 0.035 \text{ x } 50) = 13460 \text{ h}$
- $Q_{BE,2} = 17500/(0.061 \text{ x } 70 0.035 \text{ x } 70) = 9615 \text{ h}$
- © Dr. Md. Zahurul Haq (BUET) Engineering Economics ME 307 (2024)

26 / 28

Economic Decision Making

Payback Period with Salvage value

Payback Period

Economic Decision Making

