M3-9: Diesel / Natural Gas Power Generating System

Dr. Md. Zahurul Haq, Ph.D., CEA, FBSME, FIEB

Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

http://zahurul.buet.ac.bd/

Capacity Development Training Program on **Energy Auditing and Energy Management**

© Dr. Md. Zahurul Haq (BUET)

Power Units

May, 2024

1/10

Reciprocating Combustion Engines

- 1 Intake stroke: Inlet valve (IV) open & Exhaust valve (EV) closed
- 2 Compression stroke: IV & EV are closed,
- Power stroke: IV & EV are closed.
- Exhaust stroke: IV closed & EV open,

- Spark initiates the flame in SIE; high compression in CIE generates high temperature for ignition in CIE.
- Part-load efficiency of CIE is better as load is regulated by fuel injection adjustment; in SIE throttling is used to reduce load which increases pumping work.
- SIEs are high speed engines with higher temperature exhaust.

© Dr. Md. Zahurul Haq (BUET)

3/10

Energy Balance of Reciprocating Engine

	Conventional cooling system	Cooling system with engine jacket and exhaust heat recovery		
500-kW natural gas engine generator*				
Electric power	30%	30%		
Jacket-water heat	38%)	38% 54% recoverable		
Exhaust heat	24%	Exh recoverable 16%		
	70% wasted	Exh lost 8% 16% wasted		
Radiated heat lost to atmosphere	8%)	8%) 16% wasted		
	100%	100%		
500-kW diesel engine generator*				
Electric power	35%	35%		
Jacket water	32%)	32% 48% recoverable		
Exhaust heat	24%	Exh recoverable 16%		
	65% wasted	Exh lost 8% 17% wasted		
Radiated heat lost to atmosphere	9%)	9%) 17% wasted		
5.9	100%	100%		

© Dr. Md. Zahurul Haq (BUET) Power Units May, 2024 9 / 10

 \dot{m}_f : fuel consumption rate [kg/hr]

 \dot{W}_b : brake power [kW]

bsfc : brake sp. fuel consumption [kg/kW-hr]

N : engine crankshaft rotation speed [rpm, rev/min]

 η_{th} : thermal efficiency [%]

$$bsfc = rac{\dot{m_f} [kg/hr]}{\dot{W_b} [kW]} \ \eta_{th} = 100 rac{3600 W_b [kW]}{\dot{m_f} [kg/hr] \cdot LHV [kJ/kg]} \%$$

If a gasoline based 1 kW generator consumes 1 litre/hr gasoline:

• $\dot{m}_f = 0.8 \text{ kg/hr}$

• $bsfc = \frac{0.8}{1} = 0.8 \text{ kg/kW-hr}$

• $\eta_{th} = 100 \frac{3600 \times 1}{0.8 \times 44.5 \times 1000} = 10.1\%$

O D MI 7 I III (DUET)	D 11.5	14 0004	10/10
© Dr. Md. Zahurul Haq (BUET)	Power Units	May, 2024	10 / 10