

Properties of Gasoline Fuels

	Average gasoline	Gasohol	Phase 1 RFG	Phase 2 RFG
Aromatics, vol%	28.6	23.9	23.4	25.4
Olefins, vol%	10.8	8.7	8.2	4.1
Benzene, vol%	1.60	1.6	1.3	0.93
Reid vapor pressure, kPa	60-S	67-S	50-S	46
(S: summer and W: winter)	79 -W	79-W	79 -W	
T_{50} , K	370	367	367	367
T_{90} , K	440	431	431	418
Sulfur, mass ppm	338	305	302	31
Ethanol, vol%	0	10	4	0

TSource: Adapted from EPA 420-F-95-007.

© Dr. Md. Zahurul Hag (BUET)

M2-1: Fuels & Combustion

May, 2024

5 / 20

Fuels Coal

Coal Ranking & Analysis

ASTM (American Society for Testing Materials) Classifications:

- Anthracitic coals (class I)
- Bituminous coals (class II)
- Subbituminous coals (class III)
- 4 Lignitic coals (class IV)

Analysis of coal:

As-burned mass fraction = [dry, ash-free mass fraction][1-M-A]

M2-1: Fuels & Combustion

- As-burned HHV = [dry, ash-free HHV][1-M-A]
 - ► FC ≡ mass fraction of fixed carbon
 - ► VM = mass fraction of volatile matter
 - $ightharpoonup A \equiv \text{mass fraction of ash}$
 - ► M ≡ mass fraction of moisture
- $HHV LHV = 2400(M + 9H_2)$

© Dr. Md. Zahurul Haq (BUET)

• $HHV = 33950C + 144200 (H_2 - 144200)$

© Dr. Md. Zahurul Haq (BUET)

May, 2024

Diesel Fuel Specifications (ASTM D975)

	ASTM Method	No. 1-D	No. 2-D	No. 4-D
Minimum cetane number	D613	40	40	30
Minimum flash point, °C	D93	38	52	55
Cloud point, °C	D2500	Local	Local	Local
Maximum water and sediment, vol%		0.05	0.05	0.05
Maximum carbon residue	D524	0.15	0.35	
Maximum ash, wt%	D482	0.01	0.01	0.10
T_{90} , K	D86	561 max	555-611	
Kinematic viscosity at 40 °C (mm²/s)	D445	1.3-2.4	1.9-4.1	5.5-24
Maximum copper strip corrosion		No. 3	No. 3	

- 1-D: is a light distillate ($\sim C_{12}H_{22}$) for cold weather.
- 2-D: is a middle distillate ($\sim C_{15}H_{25}$) diesel fuel of lower volatility and is the most common for vehicles.
- 4-D: is a heavy distillate fuel used for stationary applications where the engine speed is low and more or less constant.

© Dr. Md. Zahurul Haq (BUET)

M2-1: Fuels & Combustion

May, 2024

Combustion Chemistry & Thermodynamics

Combustion

- Combustion of fuel-air mixture inside engine cylinder is one of the processes that controls engine power, efficiency and emissions.
- Combustion commonly observed involves flame, which is a thin region of rapid exothermic chemical reaction.
- Flame propagation is the result of strong coupling between chemical reaction, transport processes of mass diffusion, heat conduction and fluid flow.
- Conventional spark-ignition (SI) flame is premixed unsteady turbulent flame, and the fuel-air mixture through which it propagates is in the gaseous state.
- Diesel engine (CI) combustion process is predominantly an unsteady turbulent diffusion flame, and the fuel is initially in the liquid phase.

Combustion Chemistry & Thermodynamics

Combustion Stoichiometry

$$\underbrace{C_{\alpha}H_{\beta}\,O_{\gamma}S_{\delta}}_{\textit{fuel}} + \underbrace{a_{s}\,\left(O_{2} + 3.76\,N_{2}\right)}_{\textit{air}} \longrightarrow \underbrace{\alpha\,CO_{2} + n_{1}H_{2}O + \delta\,SO_{2} + n_{2}N_{2}}_{\textit{complete combustion product}}$$

$$a_s = \alpha + \frac{\beta}{4} + \delta - \frac{\gamma}{2}$$

$$M_{fuel} = 12\alpha + \beta + 16\gamma + 32\delta$$

Stoichiometric or theoretical air-fuel ratio (A/F):

$$\left(\frac{A}{F}\right)_{T,M,D} = 4.76a_s, \quad \left(\frac{A}{F}\right)_{T,G,D} = \frac{28.85\left(\frac{A}{F}\right)_{T,M,D}}{M_{fuel}}$$

T: theoretical or stroichiometric

M: molar basis

G: gravimetric or mass basis

D: dry

© Dr. Md. Zahurul Haq (BUET)

M2-1: Fuels & Combustion

May, 2024

9 / 20

Combustion Chemistry & Thermodynamics

Heating Values of Fuels

T296

 The heating value is the heat release per unit mass of the fuel initially at 25 °Creacts completely with oxygen (or air) and the products are returned to 25 °C.

Combustion Chemistry & Thermodynamics

• Generalized form of $(A/F)_{T,G,D}$ from ultimate analysis:

$$\left(\frac{A}{F}\right)_{T,G,D} = \frac{2.66C + 7.94H_2 + 0.998S - O_2}{0.232}[1 - M - A]$$

where, the moisture and ash values are as-burned values and all other values are dry, ash-free values.

ullet $\lambda \equiv$ relative air-fuel ratio or excess-air factor

$$\lambda = \frac{(A/F)_{\text{a}}}{(A/F)_{\text{s}}}: \quad \lambda = \left\{ \begin{array}{l} >1 & \text{: lean mixture} \\ =1 & \text{: stoichiometric mix.} \\ <1 & \text{: rich mixture} \end{array} \right.$$

- Major products of lean combustion are H_2O , CO_2 , O_2 and N_2 ; while, for rich combustion these are H_2O , CO_2 , CO, H_2 and N_2 .
- For lean combustion:

$$C_{\alpha}H_{\beta}O_{\gamma}S_{\delta}+\lambda \ a_{s}(O_{2}+3.76N_{2}) \rightarrow \alpha CO_{2}+n_{1}H_{2}O+\delta SO_{2}+n_{2}N_{2}+(\lambda-1)a_{s}O_{2}+\alpha CO_{2}+n_{2}N_{2}+\alpha CO_{2}+n_{2}N_{2}+\alpha CO_{2}+\alpha CO_{2$$

© Dr. Md. Zahurul Haq (BUET)

© Dr. Md. Zahurul Haq (BUET)

M2-1: Fuels & Combustion

May, 2024

10/2

$$Q_{HHV,P} = Q_{LHV,P} + \left[rac{m_{H_2O}}{m_f}
ight] h_{fg,H_2O}$$

- $Q_{HHV,P} \equiv \text{Higher (Gross) Heating Value}$
- $Q_{IHVP} \equiv \text{Lower (Net) Heating Value}$
- $m_{H_2O}/m_f \equiv$ mass ratio of water produced to fuel burned.
- $h_{fg,H_2O} = 2.445 \text{ MJ/kg}$, for water

© Dr. Md. Zahurul Hag (BUET) M2-1: Fuels & Combustion May, 2024

13 / 20

Combustion Chemistry & Thermodynamics

Fuel	Symbol	$(A/F)_s$	as	LHV	$T_{ad,P}$	SIT
				(MJ/kg)	(K)	(K)
Hydrogen	$H_2(g)$	34.01	0.5	119.95	2383	673
Methane	$CH_4(g)$	17.12	2.0	50.0	2227	810
Methanol	$CH_4O(1)$	6.43	1.5	19.9	2223	658
Gasoline	$C_7H_{17}(1)$	15.27	11.25	44.5	2257	519
Octane	$C_8H_{18}(I)$	15.03	12.50	44.4	2266	691
Diesel	$C_{14.4}H_{24.9}(I)$	14.3	20.63	42.94	2283	483

© Dr. Md. Zahurul Haq (BUET)

M2-1: Fuels & Combustion

May, 2024

Combustion Chemistry & Thermodynamics

Example - Methane-Air Combustion

- $CH_4 + a_s (O_2 + 3.76N_2) \longrightarrow n_1 CO_2 + n_2 H_2 O + n_3 N_2$
- \bullet $a_s = 2.0$, $n_1 = 1.0$, $n_2 = 2.0$, $n_3 = 7.52$
- $(\frac{A}{F})_{TMD} = 4.76a_s = 9.52$ mole-air/mole-fuel
- ullet $\left(rac{A}{F}
 ight)_{T.G.D} = rac{28.85\left(rac{A}{F}
 ight)_{T,M,D}}{M_{fuel}} = 17.17 \; ext{kg-air/kg-fuel}$
- ⇒ Higher Heating Value (HHV): when water is in liquid form.
- $HHV = LHV + \frac{m_{H2O}}{m_f} h_{fg} = 55.5 \text{ MJ/kg} \blacktriangleleft$
- Estimate A/F)_{T,G,D} for Diesel-air combustion using two formulas.

[14.32 kg-air/kg-fuel]

15 / 20

Combustion Chemistry & Thermodynamics

Propane is used as fuel in heaters for preheating paints. Calculate the Air to Fuel ratio for complete combustion of C₃H₈ (Propane) and CO₂ released per kg of propane, if 15% excess air is supplied to the heater.

[17.95 kg-air/kg-fuel, 3 kg CO₂ per kg of fuel.]

Combustion Chemistry & Thermodynamics

For combustion of 500 litre/hr of furnace oil, estimate combustion air quantity per hr with 20% excess air. Sp.Gr. of furnace oil is 0.95. (Fuel analysis: C - 84%, H₂ - 12%, S - 3%, O₂ - 1%).

[7877 kg-air/hr]

© Dr. Md. Zahurul Haq (BUET)

M2-1: Fuels & Combustion

May, 2024

17 / 20

Combustion Chemistry & Thermodynamics

Calculate $(A/F)_{T,G,D}$ for burning LPG, composes of 40% propane and 60% butane.

[15.56 kg-air/kg-fuel]

© Dr. Md. Zahurul Haq (BUET)

M2-1: Fuels & Combustion

May, 2024

18 / 20

Actual Combustion Process

Excess air supplied (EA)

• If $O_2\%$ of flue gas is known:

$$EA = 100 \frac{O_2\%}{21 - O_2\%} (\%)$$

• If [CO₂%] of flue gas is known:

$$EA = 7900 \frac{[CO_2\%]_t - [CO_2\%]}{[CO_2\%] \times \{100 - [CO_2\%]_t\}} (\%)$$

- $[CO_2\%]_t = 100 \frac{\text{C mole}}{\text{C mole+S mole+N mole}}$
- If ultimate analysis of fuel is known:

$$C mole = \frac{\%C}{12}$$

$$S mole = \frac{\%S}{32}$$

$$N mole = \frac{\%N}{28} + 2.75 \left(\frac{A}{F}\right)$$

Actual Combustion Process

Estimate EA for the combustion of coal (Ultimate analysis: C - 36%, H₂ - 2.6%, S - 0.6%, $O_2 - 7.3\%$, $N_2 - 1.1\%$, ash - 48% and moisture = 4.4%). Flue gas contains: 14% CO₂ and 0.55% CO.

[32.5%]