

To include the water vapour contained in the atmospheric air:

$$\begin{bmatrix} A \\ \overline{F} \end{bmatrix}_{T,M,W} = \left[1 + \frac{\omega}{0.622} \right] \left[\frac{A}{F} \right]_{T,M,D}$$
$$\begin{bmatrix} A \\ \overline{F} \end{bmatrix}_{T,G,W} = (1 + \omega) \left[\frac{A}{F} \right]_{T,G,D}$$
(© Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion ME 6163 (2020) 8/44

Combustion Stoichiometry

1

• $\lambda \equiv$ relative air-fuel ratio or excess-air factor or dilution coefficient

$$\Phi = \lambda^{-1} = \frac{(A/F)_s}{(A/F)_a} = \frac{(F/A)_a}{(F/A)_s}: \quad \Phi = \begin{cases} <1 & : \text{ lean mixture} \\ =1 & : \text{ stoichiometric mix.} \\ >1 & : \text{ rich mixture} \end{cases}$$

• Percent excess air = $100(\lambda - 1)$

1

τ*τ*

• Actual air-fuel ratio,

$$\left.\frac{A}{F}\right]_{A,G,D} = \lambda \left[\frac{A}{F}\right]_{T,G,D}$$

 $(\frac{A}{F})_{A,M,D} \equiv$ Actual, Molar, Dry air-fuel ratio $(\frac{A}{F})_{T,G,D} \equiv$ Theoretical, Gravimetric, Dry air-fuel ratio $\begin{bmatrix} A \\ F \end{bmatrix}_{A,V,D} = \begin{bmatrix} (\%N_2)(Z_c) \\ (\%CO + \%CO_2) \\ - \frac{Z_N}{2} \end{bmatrix} \frac{1}{0.79}$ © Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion ME 6163 (2020)

Illustrative Example: Dew-point of Combustion Products³ Fuel: 92% CH₄, 9% H₂, 14% N₂, 2% O₂, 3% CO₂ Air: 20°C, 1 atm, 80% RH $\rightarrow \omega = 0.01175$ Stoichiometric combustion, $\phi = 1.0$ • $Z_{C} = 0.75, Z_{H} = 3.06, Z_{S} = 0, Z_{N} = 0.28, Z_{O} = 0.01$ $\Rightarrow (A/F)_{T,M,D} = 6.975, (A/F)_{T,M,W} = 7.108$ • water moles = 7.108 - 6.975 = 0.132 (from air moisture) • Fuel + 6.975 Air + 0.132 H₂O \longrightarrow 0.75 CO₂ + 1.662 H₂O + 5.651 N₂ • $P_{water} = (1.662/8.063) P_{atm} \rightarrow P_{water} = 20.8 \text{ kPa}.$ • $T_{dp} = P_{sat}(20.8 \ kPa) = 60.9^{\circ} \text{C}$ ³Y. Cengel (2014). Thermodynamics: An Engineering Approach. 8th ed. McGraw-Hill © Dr. Md. Zahurul Hag (BUET) Thermodynamics of Combustion ME 6163 (2020) 10/44

Combustion Stoichiometry

11

9/44

ME 6163 (2020)

15/44

© Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion

16 / 44

	Heat Rel	ease Parameters H	leating Values of Fuels	
	Н	ligher Heat	ing Values of	f Some Fuels ⁸
		Heating value		
1	Fuel	MJ/kg	BTU/lb	kJ/mol
	Hvdrogen	141.8	61.100	286
1	Methane	55.5	23,900	890
1	Ethane	51.9	22,400	1,560
1	Propane	50.35	21,700	2,220
1	Butane	49.5	20,900	2,877
	Gasoline	47.3	20,400	~5,400
1	Paraffin	46	19,900	16,300
1	Diesel	44.8	19,300	~4,480
	Coal	15-27	8,000-14,000	200-350
,	Wood	15	6,500	300
1	Peat	6-15	2,500-6,500	
1	Methanol	22.7	9,800	726
1	Ethanol	29.7	12,800	1,368
1	Propanol	33.6	14,500	2,020
	Acetylene	49.9	21,500	1,300
1	Benzene	41.8	18,000	3,270
	Ammonia	22.5	9,690	382
1	Hydrazine	19.4	8,370	622
1	Hexamine	30.0	12,900	4,200
T1255	Carbon	32.8	14,100	393.5
⁸ S. McAlli Processes. Sp	ster, J. Chen, and ringer.	d A. Fernandez-Pe	ello (2011). Fundamen	tals of Combustion
© Dr. Md. Zahu	rul Haq (BUET)	Thermodynamics o	f Combustion N	ME 6163 (2020) 19/44

Adiabatic Flame Temperature is the product temperature in an ideal adiabatic combustion process. Actual peak temperatures in engines are several hundred degrees less due to:

- heat loss from the flame
- combustion efficiency is less than 100%: a small fraction of fuel does not get burned, and some product components dissociate (endothermic reaction) at high temperatures.

© Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion

ME 6163 (2020) 20/44

Heat Release Param	eters Adiab	atic Flame Tem	perature	
Adiabatic Flame	e Temp	eratures	of some F	uels ¹⁰
	E	quivalence ratio, F		
Fuel	0.8	1.0	1.2	
Gaseous Fuels				
Methane	2020	2250	2175	
Ethane	2040	2265	2200	
Propane	2045	2270	2210	
Octane	2150	2355	2345	
Liquid Fuels				
Octane	2050	2275	2215	
Cetane	2040	2265	2195	
No. 2 fuel oil	2085	2305	2260	
Methanol	1755	1975	1810	
Ethanol	1935	2155	2045	
Solid Fuel (Dry)				
Bituminous coal	1990	2215	2120	
Lignite	1960	2185	2075	
Wood	1930	2145	2040	
RDF ^a	1960	2175	2085	
Solid Fuels (25% Moisture)				
Lignite	1760	1990	1800	
Wood	1480	1700	1480	
T1254 RDF ^a	1660	1885	1695	
¹⁰ G. Borman and K. Ragland (1998).	Combustion	n Engineering.	McGraw-Hill.	
© Dr. Md. Zahurul Haq (BUET) Thermody	namics of Co	mbustion	ME 6163 (2020)	23 / 44

Coal Combustion

Coal Analysis¹¹

- 1 Proximate analysis: gives the mass fraction of fixed carbon (FC), volatile matter (VM), ash (A) and moisture (M) in the coal sample.
- **2** Ultimate analysis: a laboratory analysis that lists the mass fractions of carbon (C), hydrogen (H_2) , nitrogen (N_2) and sulphur (S), required for combustion-air calculations.
- Ash is essentially the inorganic matter deposited with the organic materials during the compaction process.
- As moisture and ash fractions can vary widely, a common practice is to report on a moisture-free (dry) and ash-free basis.
- As-burned mass fraction = [dry, ash-free mass fraction][1-M-A]
- As-burned HHV = [drv, ash-free HHV][1-M-A]

¹¹A. Culp (1991). Principles of Energy Conversion. 2nd ed. McGraw-Hill. © Dr. Md. Zahurul Hag (BUET) Thermodynamics of Combustion ME 6163 (2020) 25 / 44

Coal Combustion

For coal, where the moisture and ash values are as-burned values and all other values are dry, ash-free values:

$$\left[\frac{A}{F}\right]_{T,G,D} = \frac{[2.66C + 7.94H_2 + 0.998S - O_2](1 - M - A)}{0.232}$$

- = mass fraction of coal in dry, ash-free coal C
- = as-burned moisture content М
- = as-burned ash content
- $HHV = 33950C + 144200(H_2 \frac{O_2}{2}) + 9400S$ (kJ/kg)
- $HHV LHV = 2400(M + 9H_2)$ (kJ/kg)
- A Mass fractions of C, H₂, O₂, S must be at as-received/as-burned condition.

© Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion

ME 6163 (2020)

26 / 44

28 / 44

Chemical Equilibrium

Observations: K_p of Ideal Gas Mixture¹⁶

- The K_p of a reaction depends solely on temperature only.
- The K_p of the reverse reaction is $1/K_p$.
 - $K_p = 0.1147 \times 10^{11}$ for $H_2 + \frac{1}{2}O_2 \implies H_2O$ at 1000 K
 - $K_p = 8.718 \times 10^{-11}$ for H₂O \rightleftharpoons H₂ + $\frac{1}{2}$ O₂ at 1000 K
- The larger the K_p , the more complete the reaction.
 - $K_p > 1000 \rightarrow$ reaction proceeds to completion,
 - $K_p < 0.001
 ightarrow$ reaction assumed not occurring.
- The mixture pressure affects the equilibrium composition.
- The presence of inert gases affects the equilibrium composition.
- Equilibrium calculations provide information on the equilibrium composition of a reaction, not on the reaction rate.

Chemical Equilibrium

Equilibrium with Simultaneous Reactions¹⁷

Illustrative Example:

Moran Ex.14.9 \triangleright A system consisting initially of 1 kmol of CO₂, 12 kmol of O₂, and 12 kmol of N₂ forms an equilibrium mixture of CO₂, CO, O₂, N₂, and NO at 3000 K, 1 atm. Determine the composition of the equilibrium mixture. CO₂ + $\frac{1}{2}$ N₂ + $\frac{1}{2}$ O₂ $\longrightarrow a$ CO + b NO + c CO₂ + dO₂ + e N₂

- c = 1 a, d = 0.5(1 + a b), e = 0.5(1 b)
- Two independent reactions:

1 CO₂
$$\Longrightarrow$$
 CO + $\frac{1}{2}$ O₂ \Rightarrow K₁ = $\frac{a}{1-a} \frac{\sqrt{1+a-b}}{\sqrt{1+a+4}}$
2 $\frac{1}{2}$ N₂ + $\frac{1}{2}$ O₂ \Longrightarrow NO \Rightarrow K₂ = $\frac{2b}{\sqrt{(1-b)(1+a-b)}}$

• At 3000 K & 1 atm, $K_1 = 0.327, K_2 = 0.1222$

$$\Rightarrow$$
 $a = 0.374, b = 0.0674, c = 0.626, d = 0.653, e = 0.466$

		Chemical Equilibriun	Equilibrium Composit	ion: Simple Calculati	on	
]
Species	n_i	$\varphi \leq 1$	$\varphi > 1$			
CO_2	n_1	Z_C	$Z_C - n_5$			
H_2O	n_2	$Z_H/2$	$Z_H/2 - d_1 + n_5$			
N_2	n_3	$Z_N/2 + 0.79 a_s/\phi$	$Z_N/2 + 0.79 a_s/c$	Þ		
O_2	n_4	$0.42 a_s$	0			
CO	n_5	0	n_5			
H_2	n_6	0	d_1-n_5			
• $d_1 =$	0.42a	$s_s(1-1/\Phi)$				
• $C_1 =$	$-Z_{C}$	$d_1 K$				
- 1 b _	7 /0	V = KT $J(1 = K$	~)			
• 01 -	2 _H /2	$r + R Z_C - u_1(1 - R)$.)			
• $a_1 =$	1 - k	۲ 				
• $n_5 =$	$-b_1+$	$\frac{\sqrt{b_1^2 - 4a_1c_1}}{2a_1}$				
		201				-
Dr. Md. Zah	urul Ha	q (BUET) Thermodynan	nics of Combustion	ME 6163 (2020)	41 / 44	C
		Chemical Equilibriun	Equilibrium Composit	ion: Simple Calculati	on	
Heat R	elea	Chemical Equilibrium se: Product Le	equilibrium Composit	ion: Simple Calculati Temperati	ure ²⁴	
Heat R	eleas	Chemical Equilibrium	Bquilibrium Composit	ion: Simple Calculati Temperati	ure ²⁴	
Heat R	eleas	Chemical Equilibrium	Bquilibrium Composit	ion: Simple Calculati Temperati	ure ²⁴	
Heat R	elea	Chemical Equilibrium	^a Equilibrium Composit	ion: Simple Calculati Temperati	ure ²⁴	
Heat R	eleas	Chemical Equilibrium	^a Equilibrium Composit	ion: Simple Calculati	ure ²⁴	
Heat R	eleas	Chemical Equilibrium	Equilibrium Composit	ion: Simple Calculati	ure ²⁴	

Chemical Equilibrium Equilibrium Composition: Simple Calculation ustrative Example: Octane ($\phi = 1.2$) combustion at 1000 K²³ • $Z_C = 8$, $Z_H = 18 \rightarrow a_s = 59.52$ • $d_1 = 4.167$ • $\ln K = -0.34 \rightarrow K = 0.705$ $[\ln K_P = -\Delta G_T^o/R_u T, K_P = 0.693]$ • $a_1 = 0.295, b_1 = 13.41, c_1 = -23.50$ • $n_5 = 1.690 \rightarrow n_1 = 6.31, n_2 = 6.52, n_3 = 39.17, n_6 = 2.48$ • $N = \sum n_i = 56.17$ $C_8H_{18} + 49.6(0.21O_2 + 0.79N_2)$ $\rightarrow 6.31CO_2 + 6.52H_2O + 39.17N_2 + 1.69CO + 2.48H_2$ • $Y_5 = Y_{CO} = n_5/N = 0.03 = 30000 \text{ ppm}$ ³C. Ferguson and A. Kirkpatrick (2015). Internal Combustion Engines: Applied rmosciences. Wiley. Md. Zahurul Haq (BUET) Thermodynamics of Combustion ME 6163 (2020) 42 / 44

References References 1 can, M. et al. (2014). Fundamentals of Engineering Thermodynamics. 8th ed. Wiley. lp, A. (1991). Principles of Energy Conversion. 2nd ed. McGraw-Hill ngel, Y. (2014). Thermodynamics: An Engineering Approach. 8th ed. McGraw-Hill. rns, S. (2012). An Introduction to Combustion: Concepts and Applications. 3rd ed. McGraw-Hill Wark Ex. 13.7 ▷ Methane gas initially at 400 K is burned with 50% excess air McAllister, S., J. Chen, and A. Fernandez-Pello (2011). Fundamentals of Combustion which enters the combustion chamber at 500 K. Product leaves the chamber Processes. Springer at 1800 K and 1 atm. Estimate heat release per kmol of methane. Borman, G. and K. Ragland (1998). Combustion Engineering. McGraw-Hill. Wark, K. and D. Richards (1999). Thermodynamics. 6th ed. McGraw-Hill. Ferguson, C. and A. Kirkpatrick (2015). Internal Combustion Engines: Applied Thermosciences, Wiley. Winterbone, D. (1997). Advanced Thermodynamics for Engineers. Arnold. Heywood, J. (2018). Internal Combustion Engine Fundamentals. 2nd ed. McGraw-Hill. 4 ²⁴K. Wark and D. Richards (1999). Thermodynamics. 6th ed. McGraw-Hill. © Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion 43 / 44 ME 6163 (2020) © Dr. Md. Zahurul Haq (BUET) Thermodynamics of Combustion ME 6163 (2020) 44 / 44