Kinetics of Combustion

Dr. Md. Zahurul Haq

Professor

Department of Mechanical Engineering
Bangladesh University of Engineering & Technology (BUET)

Dhaka-1000, Bangladesh

http://zahurul.buet.ac.bd/

ME 6163: Combustion Engineering http://zahurul.buet.ac.bd/ME6163/

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

ME 6163 (2020)

1 / 19

Rate Laws

Rate Laws & Reaction Order¹

$$A + B + C + \dots \xrightarrow{k} D + E + F + \dots$$

- Reaction Rate (RR) = $\frac{d[A]}{dt} = -k[A]^a[B]^b[C]^c \cdots$ a, b, c, \cdots are reaction orders wrt. A, B, C, \cdots , k is the rate coefficient of the reaction, the sum of all the exponents is the overall reaction rate.
- If some species are in excess, $[B], [C], \cdots$ remains constant, $RR = \frac{d[A]}{dt} = -k[A]^a$
- If the time behaviour is measured, the reaction order can be determined.

¹J. Warnatz, U. Maas, and R. Dibble (2006). Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th ed. Springer.

© Dr. Md. Zahurul Haq (BUET) Kinetics of Combustion

ME 6163 (2020)

3 / 19

Overview

- 1 Rate Laws
- 2 Elementary Reactions & Chain Reactions Elementary Reactions Chain Reactions

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

ME 6163 (2020)

2/

Rate Laws

- For first-order systems (a = 1): $\ln \frac{[A]_t}{[A]_0} = -k(t t_0)$ $[A]_0 & [A]_t$ denote the concentration of species A at time t_0 and t, respectively.
- For second-order systems (a = 2): $\frac{1}{[A]_t} \frac{1}{[A]_0} = k(t t_0)$
- For third-order systems (a=3): $\frac{1}{[A]_t^2} \frac{1}{[A]_0^2} = 2k(t-t_0)$

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

ME 6163 (2020)

4/1

Rate Laws

Relation of Forward & Reverse Reactions²

$$A + B + C + \dots \xrightarrow{k} D + E + F + \dots$$

- Forward reaction rate for production of A. $\frac{d[A]}{dt} = -k_f[A]^a[B]^b[C]^c \cdots$
- Reverse reaction rate for production of A, $rac{d[A]}{dt} = k_b[D]^d[E]^e[F]^f \cdots$
- At chemical equilibrium, forward and backward reaction rates are same and no net reaction can be observed.
- $\Rightarrow -k_f[A]^a[B]^b[C]^c \cdots = k_b[D]^d[E]^e[F]^f \cdots$
- \implies Equilibrium constant (based on concentration), K_c $K_c \equiv = \frac{k_f}{k_c} = \frac{[D]^d [E]^e [F]^f}{[A]a[P]b[C]c}$
- ²J. Warnatz, U. Maas, and R. Dibble (2006). Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th ed. Springer.

© Dr. Md. Zahurul Haq (BUET)

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

ME 6163 (2020)

Rate Laws

Global One-step Reaction⁴

$$RR = A_o \exp\left(-rac{E_a/R_u}{T}
ight) [\mathit{Fuel}]^a [\mathit{O}_2]^b$$

Fuel	A_0	Ea (kcal/mol)	a	b
CH ₄ *	1.3.109	48.4	-0.3	1.3
CH ₄	$8.3 \cdot 10^5$	30	-0.3	1.3
C_2H_6	$1.1 \cdot 10^{12}$	30	0.1	1.65
C_3H_8	$8.6 \cdot 10^{11}$	30	0.1	1.65
C_4H_{10}	$7.4 \cdot 10^{11}$	30	0.15	1.6
C_5H_{12}	$6.4 \cdot 10^{11}$	30	0.25	1.5
C_6H_{14}	$5.7 \cdot 10^{11}$	30	0.25	1.5
C_7H_{16}	$5.1 \cdot 10^{11}$	30	0.25	1.5
C_8H_{18}	$4.6 \cdot 10^{11}$	30	0.25	1.5
C_9H_{20}	$4.2 \cdot 10^{11}$	30	0.25	1.5
$C_{10}H_{22}$	$3.8 \cdot 10^{11}$	30	0.25	1.5
CH ₃ OH	$3.2 \cdot 10^{11}$	30	0.25	1.5
C ₂ H ₅ OH	$1.5 \cdot 10^{12}$	30	0.15	1.6
C_6H_6	$2.0 \cdot 10^{11}$	30	-0.1	1.85
C_7H_8	$1.6 \cdot 10^{11}$	30	-0.1	1.85

⁴S. McAllister, J. Chen, and A. Fernandez-Pello (2011). Fundamentals of Combustion Processes. Springer. Kinetics of Combustion

ME 6163 (2020)

Rate Laws

Temperature Dependance of Rate Coefficients³

Arrhenius law:

$$k=A_o\exp\left(-rac{E_a/R_u}{T}
ight)=A_o\exp\left(-rac{T_a}{T}
ight)$$

 $A_0 \equiv$ pre-exponential factor

 $E_a \equiv$ activation energy, corresponds to an energy barrier which has to be overcome during reaction.

 $T_a \equiv$ activation temperature, $T_a \equiv E_a/R_u$

³J. Warnatz, U. Maas, and R. Dibble (2006). Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th ed.

© Dr. Md. Zahurul Haq (BUET)

ME 6163 (2020)

Rate Laws

Example: Methane Combustion at 1800 K⁵

$$CH_4 + 2 \, (O_2 + 3.76 \, N_2) \longrightarrow CO_2 + 2 \, H_2O + 7.52 \, N_2$$

- $RR = A_o \exp\left(-\frac{E_a/R_u}{T}\right) [Fuel]^a [O_2]^b$
- $A_0 = 1.3 \times 10^9 \text{ mol/cm}^3$
- $E_a = 48.4 \text{ kcal/mol}, R_u = 1.987 \text{ cal/mol}.K$
- a = -0.3, b = 1.3, $[O_2] = 2[CH_4]$
- $\frac{d[CH_4]}{dt} = RR = 1.3 \times 10^9 \exp\left(-\frac{24358}{1800}\right) [CH_4]^{-0.3} (2[CH_4])^{1.3}$
- $\Rightarrow \frac{d[CH_4]}{dt} = -4245.3[CH_4]$
- $\implies \frac{[CH_4]}{[CH_4]_0} = \exp(-4245.3t)$
 - Reduction to 5%, $\exp(-4245.3t) = 0.05 \rightarrow t = 0.71 \text{ ms}$

⁵S. McAllister, J. Chen, and A. Fernandez-Pello (2011). Fundamentals of Combustion Processes. Springer.

Elementary Reactions & Chain Reactions Elementary Reactions

Elementary Reactions: Reaction Molecularity⁷

Unimolecular Reactions:

$$\begin{array}{l} A \longrightarrow B \text{ or } A \longrightarrow B+C \\ O_2 \longrightarrow O+O, \ H_2 \longrightarrow H+H \text{ etc.} \end{array}$$

Bimolecular Reactions:

$$A + B \longrightarrow C + D$$

 $O + H_2 \longrightarrow OH + H$

3 Termolecular Reactions:

$$A + B + M \longrightarrow C + M$$

 $H + H + M \longrightarrow H_2 + M$, $H + OH + M \longrightarrow H_2O + M$ etc
 M may be any molecule, widely known as third-body.

⁷S. Turns (2012). An Introduction to Combustion: Concepts and Applications. 3rd editions McGraw-Hill.

Rate Laws

Pressure Dependance of Rate Coefficients⁶

$$egin{aligned} RR &= A_o \exp\left(-rac{E_a/R_u}{T}
ight) [Fuel]^a [O_2]^b \ &= A_o \exp\left(-rac{E_a/R_u}{T}
ight) [X_{fuel}]^a [X_{O_2}]^b \left(rac{P/R_u}{T}
ight)^{(a+b)} arpropto P^{(a+b)} \end{aligned}$$

- For one-step combustion chemistry model, (a + b) is always positive, ranging from 1.0 to 1.75.
- When the pressure of a combustion system is doubled, the reaction rate can increase threefold for the case a + b = 1.75.

⁶S. McAllister, J. Chen, and A. Fernandez-Pello (2011). Fundamentals of Combustion Processes. Springer.

© Dr. Md. Zahurul Hag (BUET)

Kinetics of Combustion

ME 6163 (2020)

Elementary Reactions & Chain Reactions Elementary Reactions

Four Types of Elementary Reactions in Combustion⁸

- chain initiation
- 2 chain branching
- 3 chain propagating.
- 4 chain terminating or recombination

			1200	
Fuel	Species		1000-	<u> </u>
CH ₄	53	species		
C_2H_4	75	sbe	800-	
C_3H_8	176	ō	600-	/
$n-C_7H_{16}$	561	Number	400-	
$i-C_8H_{18}$	857	ļ		
n-C ₇ H ₁₆ +i-C ₈ H ₁₈	1,033	_	200-	
			0	2 3 7 8 10
		_		Carbon Number

8S. McAllister, J. Chen, and A. Fernandez-Pello (2011). Fundamentals of Combustion Processes. Springer.

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

Elementary Reactions & Chain Reactions Elementary Reactions

• Chain Initiation:

$$nR \xrightarrow{k_1} C$$

$$H_2 + M \longrightarrow H + H + M$$

$$O_2 + M \longrightarrow O + O + M$$

M is a third-body with enough energy to break H₂ or O₂ bonds.

Ohain Branching:

$$\begin{array}{c} \text{R} + \text{C} \xrightarrow{k_2} \alpha \text{C} + \text{P} \\ \text{H} + \text{O}_2 \longrightarrow \text{OH} + \text{O} \end{array}$$

$$\mathrm{H} + \mathrm{O}_2 \longrightarrow \mathrm{OH} + \mathrm{O}$$

$$O + H_2 \longrightarrow H + OH$$

produces two radical on the product side and consumes one on the reactant side. These reactions rapidly increase the pool of radicals.

3 Chain Propagation:

 $H_2 + OH \longrightarrow H_2O + H$ total number of radicals/charge-carriers (C) remains same. This example is very important as it produces the most of the H₂O in $H_2 - O_2$ combustion.

 $\Rightarrow R$ represents reactants, P represents stable products.

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

ME 6163 (2020)

13 / 19

Elementary Reactions & Chain Reactions Chain Reactions

Branched-Chain Explosion / Chain Reactions⁹

- Branched-chain explosion, when $\alpha_c \geq \alpha$.
- Explosion is favoured for small α_c , which corresponds to situations of fast chain-branching reactions (large k_2) and/or slow chain-termination reactions (small k_q and k_w).
- Since [R] is proportional to the system pressure P:

$$lpha_c
ightarrow 1 + rac{k_w}{k_2[R]}
ightarrow \infty, \quad ext{as } P
ightarrow 0.$$

$$lpha_c
ightarrow 1 + rac{k_g[R]}{k_2}
ightarrow \infty, \quad ext{ as } P
ightarrow \infty$$

- As $P \rightarrow 0$, gas density decreases and chain cycle becomes less efficient because it requires the collision between two molecules.
- As $P \to \infty$, the increase in density favours the three-body gas termination reaction as compared to the two-body chain-branching reaction.

⁹C. Law (2006). Combustion Physics. Cambridge University Press. © Dr. Md. Zahurul Haq (BUET) Kinetics of Combustion

ME 6163 (2020)

15 / 19

Elementary Reactions & Chain Reactions Elementary Reactions

A Chain Termination or Recombination:

$$C + R + R \xrightarrow{k_g} P$$
 $C \xrightarrow{k_w} P$

gas termination wall termination

$$H + O_2 + M \longrightarrow HO_2 + M$$

$$O + H + M \longrightarrow OH + M$$

$$H + OH + M \longrightarrow H_2O + M$$

- when sufficient radicals or third bodies are present, radicals can react themselves to recombine or react to form stable species.
- these reactions reduce the radical pool.

$$\frac{d[C]}{dt} = k_1[R]^n + (\alpha - 1)[R][C] - k_g[R]^2[C] - k_w[C]$$

$$=k_1[R]^n+k_2[R](\alpha-\alpha_c)[C]$$

where, $\alpha_c \equiv 1 + \frac{k_g[R]^2 + k_w}{k_z[R]}$ [C] varies exponentially with time, growing for $(\alpha - \alpha_c) > 0$ and decaying otherwise.

© Dr. Md. Zahurul Haq (BUET)

Kinetics of Combustion

ME 6163 (2020)

Elementary Reactions & Chain Reactions Chain Reactions

H₂ -O₂ Explosion Limits¹⁰

1.000 Second lim Explosion First limit T1207

¹⁰S. Turns (2012). An Introduction to Combustion: Concepts and Applications. 3rd ed McGraw-Hill.

© Dr. Md. Zahurul Haq (BUET)

1/2 H₂

 $H \bullet + O_2 + M = HO_2 + M$

Kinetics of Combustion

ME 6163 (2020)

References
References I
Warnatz, J., U. Maas, and R. Dibble (2006). Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. 4th ed. Springer.
McAllister, S., J. Chen, and A. Fernandez-Pello (2011). Fundamentals of Combustion Processes. Springer.
Turns, S. (2012). An Introduction to Combustion: Concepts and Applications. 3rd ed. McGraw-Hill.
Law, C. (2006). Combustion Physics. Cambridge University Press.
Keating, E. (2007). Applied Combustion. 2nd ed. Taylor & Francis.
Winterbone, D. (1997). Advanced Thermodynamics for Engineers. Arnold.
© Dr. Md. Zahurul Hag. (RHET) Kinetics of Combustion ME 6163 (2020) 19 / 19

Elementary Reactions & Chain Reactions Chain Reactions

Flammability and Explosion Limits¹²

	Lear	n	Rich	1		
Mixture	Flammability	Explosion	Flammability	Explosion	Stoichiometric	
H ₂ —air	4	18	74	59	29.8	
$CO-O_2$	16	38	94	90	66.7	
CO-air	12.5		74		29.8	
NH_3-O_2	15	25	79	75	36.4	
NH_3-O_2 $C_3H_8-O_2$ CH_4 -air	2	3	55	37	16.6	
CH ₄ —air	5.3		15		9.51	
C ₂ H ₆ -air	3.0		12.5		5.66	
C ₃ H ₈ -air	2.2		9.5		4.03	
C_2H_6 —air C_3H_8 —air C_4H_{10} —air 314	1.9		8.5		3.13	

 $^{12}\mathrm{D}.$ Winterbone (1997). Advanced Thermodynamics for Engineers. Arnold.

© Dr. Md. Zahurul Haq (BUET) Kinetics of Combustion ME 6163 (2020)

18 / 1