AND Gate

- Output, X, is HIGH only if inputs A and B are both HIGH.
- Boolean Equation: $X=A$ AND $B=A \cdot B=A B$

Prof. Dr. M. Zahurul Haq (BUET) Digital Electronics
ME 475

OR Gate

- Output, X , is HIGH if input A or input B is HIGH or both are HIGH.
- Boolean Equation: $X=A$ OR $B=A+B$
. . . contd.

- OR gate can be used to disable a waveform from transmitting from one point to another.

Prof. Dr. M. Zahurul Haq (BUET)

Digital Electronics
ME 475

Basic Logic Gates

NAND \& NOR Gates

- NAND: Boolean Equation: $X=\overline{A B}$
- Output is always HIGH unless both inputs are HIGH.

- NOR: Boolean Equation: $X=\overline{A+B}$
- Output is always LOW unless both inputs are LOW.

Buffer \& Inverter ICs

- Buffer IC: Boolean Equation: $X=A$

Inverter IC: Boolean Equation: $X=\bar{A}$

Prof. Dr. M. Zahurul Haq (BUET)

Basic Logic Gates

Ex-OR/Ex-NOR Gates

- Exclusive-OR (Ex-OR) gate provides a HIGH output if one input or the other input is HIGH, but not the both.

$$
\text { Ex-OR: } \quad X=A \oplus B=\bar{A} B+A \bar{B}
$$

- Ex-NOR is the compliment of the Ex-OR. It provides a HIGH output for both inputs HIGH or both inputs LOW.

$$
\text { Ex-NOR: } \quad X=\overline{A \oplus B}=A B+\bar{A} \bar{B}
$$

0	B	0	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	0	1

Parity Generator/Checking

. . . contd.

- In digital data transmission external noise can cause an error. Parity system is used to recognise the error and take corrective measures (retransmission).
- Parity system puts an extra bit to the digital transmission.
- odd parity: sum of all bits is odd.
- even parity: sum of all bits is even.

Combinational Logic

Combinational Logic Example

Prof. Dr. M. Zahurul Haq (BUET) Digital Electronic

Combinational Logic

Boolean Algebra Laws

(1) Commutative law of addition: $A+B=B+A$, and multiplication: $A B=B A$.
These laws mean that the order of ORing and ANDing does not matter.
(2) Associative law of addition: $A+(B+C)=(A+B)+C$, and multiplication: $A(B C)=(A B) C$.
These laws mean that the grouping of several variables ORed or ANDed together does not matter.
(3) Distributive law: $A(B+C)=A B+B C$, and
$(A+B)(C+D)=A C+A D+B C+B D$.
These laws show methods for expanding and equation containing ORs and ANDs.

Boolean Algebra Rules

(1) Anything ANDed with a 0 is equal to $0(A \cdot 0=0)$.
(2) Anything ANDed with a 1 is equal itself $(A \cdot 1=A)$.
(3) Anything ORed with a 0 is equal itself $(A+0=A)$.
(44) Anything ORed with a 1 is equal to $1(A+1=1)$.
(5) Anything ANDed with itself is equal itself $(A \cdot A=A)$.
(6) Anything ORed with itself is equal itself $(A+A=A)$.
(7) Anything ANDed with its own compliment equals $0(A \cdot \bar{A}=0)$.
(8) Anything ORed with its own compliment equals $1(A+\bar{A}=1)$.
(9) A variable that is complemented twice will return to its original logic level $(\overline{\bar{A}}=A)$.
(19) (a) $A+\bar{A} B=A+B$
(b) $\bar{A}+A B=\bar{A}+B$

Combinational Logic

Reduction of Logic Circuits: Example 2

$X=[(A+\bar{B})(B+C)] B$
$=(A B+A C+\bar{B} B+\bar{B} C) B \quad$ Law 3
$=(A B+A C+0+\bar{B} C) B \quad$ Rule 7
$=(A B+A C+\bar{B} C) B \quad$ Rule 3
$=A B B+A C B+\bar{B} C B \quad$ Law 3
$=A B B+A B C+\bar{B} B C \quad$ Law 1
$=A B+A B C=A B(1+C) \quad$ Rule $5,7 \& 1 ; \&$ then factorisation
$=A B$
Rule 2

Reduction of Logic Circuits: Example 1

Combinational Logic
De Morgan's Theorem 1

$\overline{A \cdot B}=\bar{A}+\bar{B}$					
		$-X=$	$A-\delta$		$-X=$
A	B	$X=\overline{A . B}$	A	B	$X=\bar{A}+\bar{B}$
0	0	1	0	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

Combinational Logic
De Morgan's Theorem: Application

$$
\begin{aligned}
X & =\overline{A B} \cdot \overline{B+C} \\
& =(\bar{A}+\bar{B}) \cdot \bar{B} \\
& =\bar{A} \bar{B} \bar{C}+\bar{B} \frac{\bar{B}}{\bar{B}} \bar{C} \\
& =\bar{A} \bar{B} \bar{C}+\bar{B} \bar{C} \\
& =\bar{B} \bar{C}(\bar{A}+1) \\
& =\bar{B} \bar{C} \\
& =\overline{B+C}
\end{aligned}
$$

De Morgan's Theorem: Application

Combinational Logic Arithmetic Operations

Binary Addition of LSB

$$
A_{o}+B_{o}=\Sigma_{o}+C_{\text {out }}
$$

A_{0}	$\mathrm{~B}_{0}$	Σ_{0}	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Addition of binary \& decimal numbers are similar. The binary sum is made up of only 1 's and 0 's.
- For LSB bit, half adder (HA) circuit is used which does not have a carry-in bit from a previous digit.
- In other bits, if a carry-out is produced, it is added to the next-more-significant column as carry-in, $C_{\text {in }}$.
. . . contd.

A_{1}	B_{1}	$C_{\text {in }}$	Σ_{1}	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Decimal	Binary
31	00011111
+7	+00000111
38	00100110

Combinational Logic Arithmetic Operations

Comparators

- The basic comparator evaluates two binary strings bit by bit and outputs 1 if they are exactly the same.
- Ex-NOR is the easiest way to compare equality of bits.

Binary Addition
contd.

Block diagram of a 4 -bit binary adder.

Prof. Dr. M. Zahurul Haq (BUET) Digital Electronics
ME 475
$22 / 40$

Sequential Logic

Combinational vs. Sequential Logic

- In combinational logic ckt, state depends upon the actual signals being applied to their inputs at that time.
- Sequential logic circuits have some form of inherent memory and these are able to take into account their previous input state as well as those actually present.
- Sequential logic ckts can be divided into 3 main groups:
(1) Clock driven: ckts are synchronised to specific CLK signal.
(2) Even driven: asynchronous ckts to react when external event occurs.
(3) Pulse driven: combination of synchronous \& asynchronous.

- +ve edge trigger devices respond to low-to-high transition.
- -ve edge trigger devices respond to high-to-low transition.

S-R Flip-Flop

- SR flip-flop be constructed using two NOR or NAND gates
- $S=1, R=0 \Longrightarrow Q=1 \& \bar{Q}=0$: Set condition
- S removed: $S=0, R=0 \Longrightarrow Q=1 \& \bar{Q}=0$: Hold.
- $S=0, R=1 \Longrightarrow Q=0 \& \bar{Q}=1$: Reset
- $S=1, R=1$: Not used.

e588.eps
Digital Electronics
ME 475
e587.eps
Prof. Dr. M. Zahurul Haq (BUET)

Sequential Logic

... Applications

To register the binary value representing the time when a temperature limit switch goes into a HIGH.

Data Latch

A level-triggered flip-flop is a latch. Data latch can be formed from the gated S-R Flip-flop by the addition of an inverter; this enables just a single input (D) to latch the previous input value.

D Flip-Flop

- It has a single input D whose value is stored and presented at the output Q at the +ve or -ve edge of CLK.

D	$C K$	Q	\bar{Q}
0	\uparrow	0	1
1	\uparrow	1	0
x	0	Q_{0}	\bar{Q}_{0}
x	1	Q_{0}	\bar{Q}_{0}

- When J and K are both low, no change in state occurs.
- When $\mathrm{J}=0$ and $\mathrm{K}=1$, the flip-flop is reset to 0 .
- When $J=1$ and $K=0$, the flip-flop is set to 1 .
- When both J and K are high, the flip-flop will toggle between states at every -ve edge of CLK.

Prof. Dr. M. Zahurul Haq (BUET)
 Digital Electronics
 ME 475

Sequential Logic

3-bit Binary Counter

A 3-bit ripple counter can be configured as a divide-by-8 mechanism simply by adding an AND gate.

T Flip-flop

T flip-flop is a JK flip-flop with its inputs tied together. It toggles between the high and low state at half of the clock frequency. It can be used as a divide by 2 counter.

Prof. Dr. M. Zahurul Haq (BUET) Digital Electronics

ME 475

Sequential Logic

4-bit Binary Counter

The ckt may be used as a frequency divider. Output B_{0}, B_{1}, B_{2}, are divide by $-2,-4,-8 \&-16$ outputs, respectively.

Decade Counter

A decade counter counts from 0 to 9 and then resets.

Prof. Dr. M. Zahurul Haq (BUET)

Digital Electronics
ME $475 \quad 37 / 40$
Sequential Logic

4-bit Parallel Register

In the register, the load input pulse acts on all clocks simultaneously causing the parallel inputs to be transferred to the respective flip-flops to store the binary data.

