AND Gate

• AND gate can be used to enable a waveform to transmit from one point to another. The LOW value disables the clock from reaching the X-output.

Digital Electronics

3 / 40

- Output, X, is HIGH if input A or input B is HIGH or both are HIGH.
- Boolean Equation: X = A OR B = A + B

... contd.

Basic Logic Gates

• OR gate can be used to disable a waveform from transmitting from one point to another.

Prof. Dr. N	1. Zahurul Haq	(BUET)	Digital Electronics	ME 475	5 / 40
		Ŧ	Basic Logic Gates		

NAND & NOR Gates

- **NAND**: Boolean Equation: $X = \overline{AB}$
- Output is always HIGH unless both inputs are HIGH.

- NOR: Boolean Equation: $X = \overline{A + B}$
- Output is always LOW unless both inputs are LOW.

Buffer & Inverter ICs

• Buffer IC: Boolean Equation: X = AA XA X• Inverter IC: Boolean Equation: $X = \overline{A}$ A XA X

				9
Prof. Dr. M. Zahurul Haq	(BUET)	Digital Electronics	ME 475	6 / 40
	I	Basic Logic Gates		

Ex-OR/Ex-NOR Gates

• Exclusive-OR (Ex-OR) gate provides a HIGH output if one input or the other input is HIGH, <u>but not the both</u>.

Ex-OR:	$X = A \oplus B = \overline{A} \ B + A \ \overline{B}$	
-		

• Ex-NOR is the compliment of the Ex-OR. It provides a HIGH output for both inputs HIGH or both inputs LOW.

Ex-NOR:	$X = \overline{A \oplus B} = AB + \overline{A} \ \overline{B}$

Digital Electronics

8 / 40

ME 475

Parity Generator/Checking

- In digital data transmission external noise can cause an error. Parity system is used to recognise the error and take corrective measures (retransmission).
- Parity system puts an extra bit to the digital transmission.
- odd parity: sum of all bits is odd.
- even parity: sum of all bits is even.

Combinational Logic Example

... contd.

Combinational Logic

Boolean Algebra Laws

 Commutative law of addition: A + B = B + A, and multiplication: AB = BA.
 These laws mean that the order of OPing and ANDing de

These laws mean that the order of ORing and ANDing does not matter.

Associative law of addition: A + (B + C) = (A + B) + C, and multiplication: A(BC) = (AB)C.

These laws mean that the grouping of several variables ORed or ANDed together does not matter.

 Distributive law: A(B + C) = AB + BC, and (A + B)(C + D) = AC + AD + BC + BD.
 These laws show methods for expanding and equation containing ORs and ANDs.

Digital Electronics

ME 475

11 / 40

Boolean Algebra Rules

- 1 Anything ANDed with a 0 is equal to 0 $(A \cdot 0 = 0)$.
- 2 Anything ANDed with a 1 is equal itself $(A \cdot 1 = A)$.
- 3 Anything ORed with a 0 is equal itself (A + 0 = A).
- 4 Anything ORed with a 1 is equal to 1 (A + 1 = 1).
- **5** Anything ANDed with itself is equal itself $(A \cdot A = A)$.
- 6 Anything ORed with itself is equal itself (A + A = A).
- ② Anything ANDed with its own compliment equals 0 $(A \cdot \overline{A} = 0)$.
- 3 Anything ORed with its own compliment equals 1 $(A + \overline{A} = 1)$.
- A variable that is complemented twice will return to its original logic level $(\overline{A} = A)$.

Digital Electronics

(a) $A + \overline{A}B = A + B$ (b) $\overline{A} + AB = \overline{A} + B$

Prof. Dr. M. Zahurul Haq (BUET)

	ar		Ł
- 2	14		k
- 3		Tit	F
- 7	. I	۳.,	Γ.

13 / 40

ME 475

Combinational Logic

Reduction of Logic Circuits: Example 2

 $= (AB + AC + \overline{B}C)B$ Rule 3 $= ABB + ACB + \overline{B}CB$ Law 3 $= ABB + ABC + \overline{B}BC$ Law 1 = AB + ABC = AB(1+C)Rule 5, 7 & 1; & then factorisation = ABRule 2

Reduction of Logic Circuits: Example 1

De Morgan's Theorem 1

Digital Electronics

ME 475 16 / 40

De Morgan's Theorem 2

De Morgan's Theorem: Application

Χ	$=\overline{AB}\cdot\overline{B+C}$	
	$= (\overline{A} + \overline{B}) \cdot \overline{B} \ \overline{C}$	De Morgan's theorem
	$= \overline{A} \ \overline{B} \ \overline{C} + \overline{B} \ \overline{B} \ \overline{C}$	
	$= \overline{A} \ \overline{B} \ \overline{C} + \overline{B} \ \overline{C}$	
	$=\overline{B} \ \overline{C}(\overline{A}+1)$	
	$=\overline{B}\ \overline{C}$	
	$=\overline{B+C}$	

De Morgan's Theorem: Application

Combinational Logic Arithmetic Operations

Binary Addition of LSB

- Addition of binary & decimal numbers are similar. The binary sum is made up of only 1's and 0's.
- For LSB bit, half adder (HA) circuit is used which does not have a carry-in bit from a previous digit.

Digital Electronics

• In other bits, if a carry-out is produced, it is added to the next-more-significant column as carry-in, $C_{\rm in}$.

contd.

... contd.

	A_1	B_1	$C_{ m in}$	Σ_1	C_{out}		
	0	0	0	0	0	_	
A1 Ao	0	0	1	1	0		
	0	1	0	1	0		
+ B1 Bo	0	1	1	0	1		
$\Sigma_1 \Sigma_0$	1	0	0	1	0		
+ +	1	0	1	0	1		
Cout Cout	1	1	0	0	1		
	1	1	1	1	1	_	
						_	
Decimal]	Binary	r			
31		000	1 1111	-			
+7		+000	0 0111				
38		001	0 0110)			
f. Dr. M. Zahurul Haq (BUET) Dig	ital Elec	tronics			M	IE 475	21 / 40
Combine to be				4:			
Combinational L	ogic A	ALITUME.	tic Opera	tions			

Combinational Logic Arithmetic Operations

Comparators

Pro

- The basic comparator evaluates two binary strings bit by bit and outputs 1 if they are exactly the same.
- Ex-NOR is the easiest way to compare equality of bits.

Combinational vs. Sequential Logic

- In combinational logic ckt, state depends upon the actual signals being applied to their inputs at that time.
- Sequential logic circuits have some form of inherent memory and these are able to take into account their previous input state as well as those actually present.
- Sequential logic ckts can be divided into 3 main groups:
 - 1 Clock driven: ckts are synchronised to specific CLK signal.
 - 2 Even driven: asynchronous ckts to react when external event occurs.
 - 3 Pulse driven: combination of synchronous & asynchronous.

• +ve edge trigger devices respond to low-to-high transition. • -ve edge trigger devices respond to high-to-low transition.

Digital Electronics

24 / 40

Digital Electronics

ME 475 23 / 40

40

Prof. Dr. M. Zahurul Haq (BUET)

Binary Addition

ME 475

Sequential Logic

S-R Flip-Flop

- SR flip-flop be constructed using two NOR or NAND gates.
- S = 1, $R = 0 \implies Q = 1 \& \overline{Q} = 0$: Set condition.
- S removed: S = 0, $R = 0 \implies Q = 1 \& \overline{Q} = 0$: Hold.
- $S = 0, R = 1 \implies Q = 0 \& \overline{Q} = 1$: Reset
- S = 1, R = 1: Not used.

... Applications

To register the binary value representing the time when a temperature limit switch goes into a HIGH.

... contd.

... Switch Bounce & De-bouncer

When switches are opened or closed, there are brief current oscillations due to mechanical bouncing or electrical arcing.

Gated S-R Flip Flop

- Level-triggered devices respond to their inputs while the clock signal is at a high level and retain their output values after the level changes.
- The output Q tracks the input D while CK is high. At the negative edge (i.e. when CK goes low), the flip-flop output will hold or latch the value D had at the edge transition.

D	CK	Q	\overline{Q}
0	1	0	1
1	1	1	0
\mathbf{x}^1	0	Q_o	$\bar{Q_o}$

Data Latch

A level-triggered flip-flop is a latch. Data latch can be formed from the gated S-R Flip-flop by the addition of an inverter; this enables just a single input (D) to latch the previous input value.

D Flip-Flop

• It has a single input D whose value is stored and presented at the output Q at the +ve or -ve edge of CLK.

JK Flip-flop

- When J and K are both low, no change in state occurs.
- When J = 0 and K = 1, the flip-flop is reset to 0.

Sequential Logic

- When J = 1 and K = 0, the flip-flop is set to 1.
- When both J and K are high, the flip-flop will toggle between states at every -ve edge of CLK.

Prof. Dr. M. Zahurul Haq (BUET)

Digital Electronics

ME 475

33 / 40

3-bit Binary Counter

A 3-bit ripple counter can be configured as a divide-by-8 mechanism simply by adding an AND gate. Digital Electronics 35 / 40

Prof. Dr. M. Zahurul Haq (BUET)

ME 475

T Flip-flop

T flip-flop is a JK flip-flop with its inputs tied together. It toggles between the high and low state at half of the clock frequency. It can be used as a divide by 2 counter.

					9
Prof. Dr.	M. Zahurul Haq	(BUET)	Digital Electronics	ME 475	34 / 40

Sequential Logic

4-bit Binary Counter

The ckt may be used as a frequency divider. Output B_0 , B_1 , B_2 , are divide by -2, -4, -8 & -16 outputs, respectively.

ME 475 36 / 40

Decade Counter

A decade counter counts from 0 to 9 and then resets.

			\$
Prof. Dr. M. Zahurul Haq (BUET) Digital Electronics	ME 475	37 / 40
	Sequential Logic		

4-bit Parallel Register

In the register, the load input pulse acts on all clocks simultaneously causing the parallel inputs to be transferred to the respective flip-flops to store the binary data.

Cascaded Decade Counter

4-bit Shift Register

1

Same basic structure of parallel register applies to the shift register, except that the input is now applied to the first flip-flop and shifted along at each clock pulse. Note that, this type of register provides both a serial and a parallel output.

Digital Electronics

