

Gasoline Property Specifications & Test Procedure

Property		ASTM method
Benzene, vol%		D3606
Distillation, K		D86
Gum, mg/mL		D381
Heating value		D240
Hydrocarbons, %		D1319
Octane, motored		D2700
Octane, research		D2699
Octane, supercharg	ed	D909
Reid vapor pressure	e, kPa	D323
Specific gravity		D287
a 10 a		D1266

Properties of Gasoline Fuels

	Average gasoline	Gasohol	Phase 1 RFG	Phase 2 RFG
Aromatics, vol%	28.6	23.9	23.4	25.4
Olefins, vol%	10.8	8.7	8.2	4.1
Benzene, vol%	1.60	1.6	1.3	0.93
Reid vapor pressure, kPa	60-S	67-S	50-S	46
(S: summer and W: winter)	79-W	79-W	79 - W	
T ₅₀ , K	370	367	367	367
Г ₉₀ , К	440	431	431	418
Sulfur, mass ppm	338	305	302	31
Ethanol, vol%	0	10	4	0

© Dr. Md

T588

7 / 21

Requirements		Parameter	
Knock resistance			
Super/Premium, min.	RON/MON	95/85	
Normal/Regular, min. 1)	RON/MON	91/82.5	
Super Plus 1)	RON/MON	98/88	
Density	kg/m ³	720775	
Sulfur, max.	mg/kg	50	
Benzene, max.	% vol.	1	
Lead, max.	mg/l	5	
Volatility			
Summer vapor pressure, min./max.	kPa	45/60	
Winter vapor pressure, min./max.	kPa	60/901)	
Evaporated volume at 70°C in summer, min /max.	% vol.	20/48	
Evaporated volume at 70 °C in winter, min./max.	% vol.	22/50	
Evaporated volume at 100°C, min./max.	% vol.	46/71	
Evaporated volume at 150°C, min./max.	% vo l .	75/ -	
Final boiling point, max.	°C	210	
VLI transition time 3), max. 2)		11501)	
1) National values for Germany,			

European Standard EN 590: Selected requirements for diesel fuels (figures specified for moderate climate where requirements are climate dependent)

≥ 51

≥46

≥ 55

< 460

≤ 200

≤ 24

≤ 5

+5..-202)

820...845

2.00...4.50

≤ 350 (until 12-31-2004);

3) In Germany, sulfur-free fuel has been on sale nationwide since 2003, throughout the EU starting 2005.

≤ 50 (low sulfur, starting 2005 - 2008)

≤ 10 (sulfur-free, starting 2009)4)

Diesel Fuel Specifications (ASTM D975)

	ASTM Method	No. 1-D	No. 2-D	No. 4-D
·				
Minimum cetane number	D613	40	40	30
Minimum flash point, °C	D93	38	52	55
Cloud point, °C	D2500	Local	Local	Local
Maximum water and sediment, vol%		0.05	0.05	0.05
Maximum carbon residue	D524	0.15	0.35	
Maximum ash, wt%	D482	0.01	0.01	0.10
<i>T</i> ₉₀ , K	D86	561 max	555-611	
Kinematic viscosity at 40 °C (mm ² /s)	D445	1.3-2.4	1.9-4.1	5.5-24
Maximum copper strip corrosion		No. 3	No. 3	

- 1-D: is a light distillate (~ $C_{12}H_{22}$) for cold weather.
- 2-D: is a middle distillate ($\sim C_{15}H_{25}$) diesel fuel of lower volatility and is the most common for vehicles.
- 4-D: is a heavy distillate fuel used for stationary applications where the engine speed is low and more or less constant.

IC Engine Fuels

© Dr. Md. Zahurul Haq (BUET)

IC Engine Fuels

Typical ASTM Petroleum Distillation Curves

• The 10% and 90% evaporation temperatures, T_{10} and T_{90} , are used in the volatility specifications.

ME 401 (2016)

10 / 21

- T₁₀: indicates the start of vaporization, is used to characterize the cold starting behaviour,
- T₉₀: indicates the finish of vaporization, is used to characterize the possibility of unburned hydrocarbons.
- The ASTM drivability index (DI) is a measure of fuel volatility and is defined as:

 $DI = 1.5T_{10} + 3T_{50} + T_{90}$

(C)	Dr.	Md.	Zahurul	Haq	(BUET)	

2) Defined by national law, for Germany 0...-20°C

Criterior

Cetane number

Cetane index

categories, max.

Density at 15°C

Sulfur content 3)

Moisture content

FAME content

1) Filtration limit

4) EU proposal

T580

Total contamination

Viscosity at 40°C

Flash point

Lubricity

CFPP¹) in six seasonal

IC Engine Fuels

_

_

°C

°C

kg/m³

mm²/s

mg/kg

mg/kg

mg/kg

% by volume

um (wear scar diameter)

ME 401 (2016)

11 / 21

Octane Number

Steps to measure the octane number of a test fuel is as follows:

- Run the CFR engine on the test fuel at either the motor or the research operating conditions.
- Slowly increase the compression ratio until the standard amount of knock occurs.
- At that compression ratio, run the engine on blends of the reference fuels isooctane and n-heptane.
- The octane number is the percentage of isooctane in the blend that produces the standardized knock at that compression ratio.

Two sets of CFR engine operating conditions for engines are employed to define two octane numbers:

IC Engine Fuels

- Research Octane Number (RON) (ASTM D908)
- Ø Motor Octane Number (MON) (ASTM D357)

© Dr. Md. Zahurul Haq (BUET)

ME 401 (2016)

13 / 21

Diesel Cetane Number

- The Cetane number characterizes the ability of the fuel to autoignite, the opposite of octane number.
- For high Cetane numbers, ignition delay is short. Hence, combustion is initiated while the fuel is being injected, so the burning rate is controlled by the rate of fuel-air mixing.
- For low Cetane numbers, fuel will not ignite until late in the injection process. Hence, fuel is well mixed so that once combustion is initiated, the burning rate is very high, causing diesel knock to occur.
- Cetane numbers for vehicular diesel range from about 40 to 55.
- The Cetane number of n-cetane is assigned a value of 100, as it is one of the fastest-igniting hydrocarbon.
- Isocetane (heptamethylnonane) ignites slowly & its CN = 15.

ME 401 (2016)

15 / 21

Octane Number Measurement Conditions

	Research	Motor	Aviation
ASTM method	D908	D357	D614
Air inlet temperature (K)	288	310	325
Jacket temperature (K)	373	373	463
Speed (rpm)	600	900	1200
Spark advance (degrees btdc)	13	19-26	35

T615

• The octane number label on gasoline pumps is the average of the research (RON) and the motor (MON) method octane numbers, known as Antiknock Index (AKI).

$$AKI = \frac{RON + MON}{2}$$

© Dr. Md. Zahurul Haq (BUET)

ME 401 (2016) 14 / 21

Cetane Number Measurement Conditions (ASTM D613)

IC Engine Fuels

Inlet temperature (°C)	66
Coolant temperature (°C)	100
Speed (rpm)	900
Injection timing (btdc)	13°
Injection pressure (MPa)	10.3
616	

• A fuel is compared with mixtures of the reference fuels in standard CFR engine, and rated by the mixture which most nearly matches the ignition delay of the test fuel.

CN = (%n - cetane) + 0.15(%heptamethylnonane)

• Calculated Cetane index, CCI: an approximation using ASTM D976 empirical correlation for petroleum-based diesel fuels:

IC Engine Fuels

 $CCI = 454.74 - 1641.416D + 774.74D^2 - 0.554 \log T_{50} + 97.803 (\log T_{50})^2$

where, $D \equiv \text{density at } 15^{\circ}\text{C} (g/\text{ml})$

© Dr. Md. Zahurul Haq (BUET)

Typical Diesel Additives

H:C Ratio of Inorganic Hydrocarbon Compounds

Saturation P-T Curves for Liquid Fuels

• It also acts as a coolant for the pistons, rings, and bearings, to enhance the rings combustion seal, to control engine wear or corrosion, and to remove impurities from lubricated regions.

IC Engine Fuels

© Dr. Md. Zahurul Haq (BUET)

ME 401 (2016)

21 / 21

