Multipressure VC System

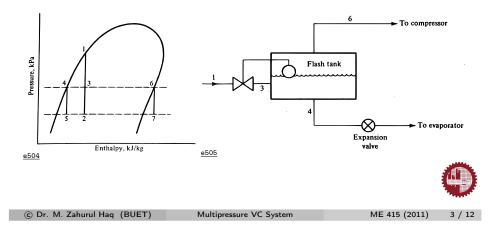
Dr. M. Zahurul Haq

Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

> zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/

ME 415: Refrigeration & Building Mechanical Systems

Multipressure VC System



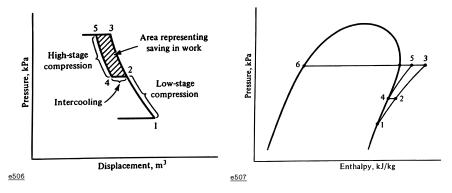
© Dr. M. Zahurul Haq (BUET)

ME 415 (2011)

Flash Gas Removal

When saturated liquid expands through an expansion device, fraction of vapour or flash gas progressively increases. Power is saved if developed flash gas is removed & re-compressed before complete expansion.

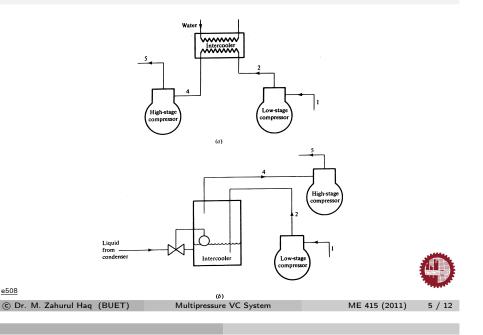
Multipressure VC System


- A multipressure system is a refrigeration system that has two or more low-pressure side.
- A multipressure system may be found in a dairy where one evaporator operates at -35°C to harden ice cream while another evaporator operates at 2°C to cool milk.
- In process industries a two or three stage compression arrangement serves an evaporator operating at a low temperature of -20° C or lower.
- Two functions often integral to mutipressure systems are:
 - Removal of flash gas
 - Inter-cooling

© Dr. M. Zahurul Haq (BUET) Multipressure VC System

ME 415 (2011) 2 / 12

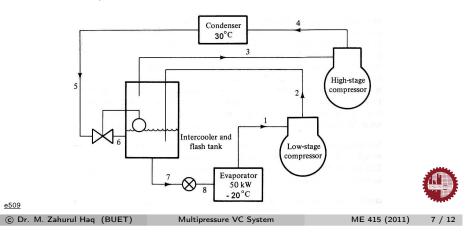
Inter-cooling

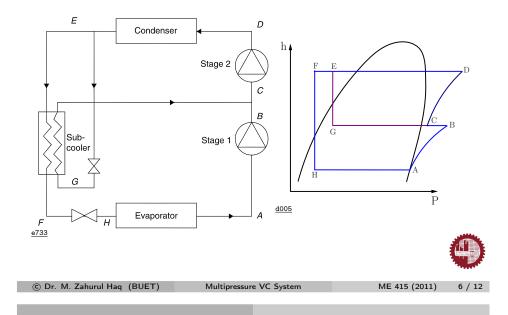

Inter-cooling between two stages of compression reduces the compression work. Inter-cooling can be done by

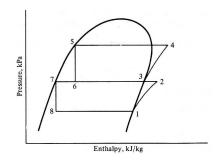
- (a) with a water cooled condenser
- (b) by using refrigerant: [i] flash inter-cooler [ii] sub-cooler

© Dr. M. Zahurul Haq (BUET) Mult

Multipressure VC System


Inter-cooling Methods


Example


e508

Determine the COP of a 2-stage refrigeration system with flash gas removal. The system uses R134a as a refrigerant to produce 50 kW refrigeration effect. Given that, $T_{cond} = 30^{\circ}$ C and $T_{evap} = -20^{\circ}$ C, and inter-cooler temperature is 0°C.

Inter-cooling with Subcooler

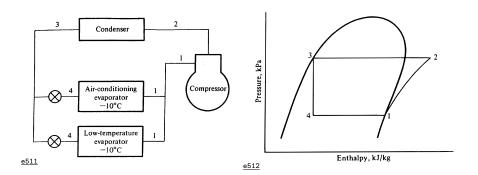
- $h_5 = h_6 = h_7 + x.(h_3 h_7) \rightsquigarrow x = 0.21$ • RE = 50 kW = $m(1-x)(h_1 - h_8) \rightsquigarrow m = 0.339$ Kg/s
- $W_{12} = m(1-x)(h_2 h_1) = 4.29 \text{ kW}$
- $W_{34} = m(h_4 h_3) = 6.80 \text{ kW}$

e510

- $W_{comp} = W_{12} + W_{34} = 11.09 \text{ kW}$
- $COP = RE/W_{comp} = 4.50$

© Dr. M. Zahurul Haq (BUET)

• energy savings > 10% with multistaging & inter-cooling.

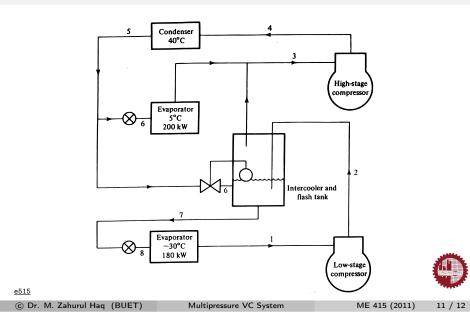

Multipressure VC System

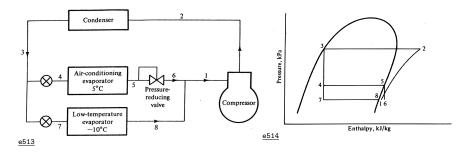
8 / 12

ME 415 (2011)

1 Compressor & 2 Evaporators System

Evaporators are at same temperature

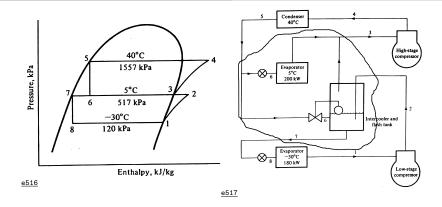

9 / 12


e515


ME 415 (2011)

2 Compressors & 2 Evaporators System

1 Compressor & 2 Evaporators System



Dr. M. Zahurul Haq (BUET)

Multipressure VC System

ME 415 (2011)

• RE at -30°C = 180 kW = $m_1(h_1 - h_8) \rightsquigarrow m_1 = 0.15$ Kg/s, NH_3 system

- Mass balance: $m_1 = m_2 = m_7 = m_8 \& m_3 = m_4 = m_5$
- Energy balance: $m_5h_5 + 200 + m_2h_2 = m_3h_3 + m_7h_7 \rightsquigarrow m_3 = 0.382 \text{ Kg/s}$
- $W_{12} = 30.1 \text{ kW}, W_{34} = 59.7 \text{ kW}, W_{comp} = 89.8 \text{ kW}$
- If 1 single stage compressor serve each evaporator,

 $W_{12} = 70.0 \ kW, \ W_{34} = 29.1 \ kW, \ W_{comp} = 99.1 \ kW$ © Dr. M. Zahurul Haq (BUET) Multipressure VC System

ME 415 (2011) 12 / 12