Digital Electronics

Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/

Department of Mechanical Engineering Bangladesh University of Engineering & Technology

ME 361: Instrumentation & Measurement

			0
Prof. Dr. M. Zahurul Haq (BUET)	Digital Electronics	ME 361	1 / 16
contd.			

• AND gate can be used to enable a waveform to transmit from one point to another. The LOW value disables the clock from reaching the X-output.

Digital Electronics

3 / 16

AND Gate

OR Gate

- Output, X, is HIGH if input A or input B is HIGH or both are HIGH.
- Boolean Equation: X = A OR B = A + B

... contd.

• OR gate can be used to disable a waveform from transmitting from one point to another.

Prof.	Dr. M.	Zahurul Haq	(BUET)	Digital Electronics	ME 361

NAND & NOR Gates

- **NAND**: Boolean Equation: $X = \overline{AB}$
- Output is always HIGH unless both inputs are HIGH.

- NOR: Boolean Equation: $X = \overline{A + B}$
- Output is always LOW unless both inputs are LOW.

Buffer & Inverter ICs

• Buffer IC: Boolean Equation: X = A

• Inverter IC: Boolean Equation: $X = \overline{A}$

Ex-OR/Ex-NOR Gates

5 / 16

ME 361

7 / 16

• Exclusive-OR (Ex-OR) gate provides a HIGH output if one input or the other input is HIGH, but not the both.

		Ex-OR:	$X = A \oplus B = \overline{A} \ B + A \ \overline{B}$
--	--	--------	--

• Ex-NOR is the compliment of the Ex-OR. It provides a HIGH output for both inputs HIGH or both inputs LOW.

IOR:			$X = A \oplus B =$	AB + AB
		\rightarrow		-
А	В	X(OR)	X(Ex–OR)	X(Ex-NOR)

0

1

0

0

1

0

1

0

Ex-1

Digital Electronics

0

1

1

0

 $+\overline{A} \overline{B}$

1

0

0

ME 361 8 / 16

Prof. Dr. M. Zahurul Haq (BUET)

Combinational Logic Example

Combinational Logic

Boolean Algebra Rules

- 1 Anything ANDed with a 0 is equal to 0 $(A \cdot 0 = 0)$.
- 2 Anything ANDed with a 1 is equal itself $(A \cdot 1 = A)$.
- 3 Anything ORed with a 0 is equal itself (A + 0 = A).
- (4) Anything ORed with a 1 is equal to 1 (A + 1 = 1).
- Solution Anything ANDed with itself is equal itself $(A \cdot A = A)$.
- 6 Anything ORed with itself is equal itself (A + A = A).
- ② Anything ANDed with its own compliment equals 0 $(A \cdot \overline{A} = 0)$.
- (a) Anything ORed with its own compliment equals 1 $(A + \overline{A} = 1)$.
- A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that is complemented twice will return to its original
 A variable that the twice will return to its original
 A variable that the twice will return to its original
 A variable that the twice will return to its original
 A variable that the twice will return to its
 A variable that the twice will return to its
 A variable that the twice will return to its
 A variable that twice will return to its
 A variable that the twice will return to its
 A variable
 A variable that the twice will return to its
 A variable
 A variable that the twice will return to its
 A variable
 A variable that twice will return to its
 A variable
 A variable that twice will return to its
 A variable
 A variable that twice will return to twill return to its
 A variable that twice will return to it logic level $(\overline{\overline{A}} = A)$.
- (a) $A + \overline{A}B = A + B$ (b) $\overline{A} + AB = \overline{A} + B$

- Boolean Algebra Laws
 - ① Commutative law of addition: A + B = B + A, and multiplication: AB = BA. These laws mean that the order of ORing and ANDing does not

matter.

- 2 Associative law of addition: A + (B + C) = (A + B) + C, and multiplication: A(BC) = (AB)C. These laws mean that the grouping of several variables ORed or ANDed together does not matter.
- 3 Distributive law: A(B + C) = AB + BC, and (A+B)(C+D) = AC + AD + BC + BD.These laws show methods for expanding and equation containing ORs and ANDs.

Combinational Logic

Reduction of Logic Circuits: Example

ME 361 12 / 16

Prof. Dr. M. Zahurul Haq	(BUET)	Digital Electronics	ME 361	13 / 16	
Combinational Logic					

De Morgan's Theorem: Application

De Morgan's Theorem 2

De Morgan's Theorem: Application

 $X = \overline{AB} \cdot \overline{B+C}$ $= (\overline{A} + \overline{B}) \cdot \overline{B} \ \overline{C}$ De Morgan's theorem $= \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} + \overline{\overline{B}} \overline{\overline{B}} \overline{\overline{C}}$ $= \overline{A} \ \overline{B} \ \overline{C} + \overline{B} \ \overline{C}$ $=\overline{B}\ \overline{C}(\overline{A}+1)$ $=\overline{B} \overline{C}$ $=\overline{B+C}$