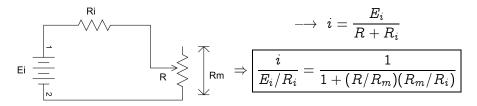
Basic Input Circuits

Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/

Department of Mechanical Engineering Bangladesh University of Engineering & Technology

ME 361: Instrumentation & Measurement



© Prof. Dr. M. Zahurul Haq (BUET)

Basic Input Circuits

ME 361

Current-sensitive Input Circuit

f001.eps

- Current flow through the circuit indicates sensor's resistance R.
- Current flow varies linearly with R for some ranges of operation.

Basic Input Circuits

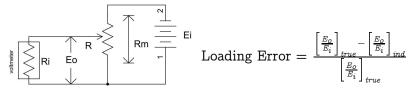
Most common input circuits used in transducer work:

- ① Current-sensitive Circuit
- 2 Voltage-sensitive (ballast) Circuit
- 3 Voltage-divider Circuit
- 4 Voltage-balancing Potentiometer Circuit
- Bridge Circuit
- 6 Amplifier Circuit

© Prof. Dr. M. Zahurul Haq (BUET)

Basic Input Circuits

ME 361


Voltage-sensitive (ballast) Circuit

f002.eps

- Voltmeter impedance is very high & draws negligible current.
- Change in R is indicated by voltage change.
- Sensitivity, $S = \frac{dE_o}{dR} = \frac{E_i R_i}{(R+R_i)^2}$
- For maximum sensitivity, $\frac{dS}{dR_i} = 0 = \frac{E_i(R R_i)}{(R + R_i)^3} :\Longrightarrow \boxed{R_i = R}$

Homework: Example 4.1 (Holma

Voltage-divider Circuit

f003.eps

- Source voltage E_i is impressed across the total transducer voltmeter with internal resistance R_i .
- For $R_i \gg R_m$: $\Longrightarrow \boxed{\left[\frac{E_o}{E_i}\right]_{true}} \frac{R}{R_m}$ For $R_i /\!\!\gg \! R_m$: $\Longrightarrow \boxed{\left[\frac{E_o}{E_i}\right]_{ind}} \frac{R/R_m}{1 + (R/R_m)(1 R/R_m)(R_m/R_i)}$

→ Homework: Example 4.2 (Holmai

© Prof. Dr. M. Zahurul Haq (BUET)

Basic Input Circuits

© Prof. Dr. M. Zahurul Haq (BUET)

f004.eps

• Source voltage E_i must be accurately known to determine E_o . Basic Input Circuits

• Galvanometer resistance R_i does not effect the reading.

• Used for precise measurements of small electrical potentials by

comparison, particularly those generated by thermocouples.

• A known portion of source voltage E_i is balanced against the

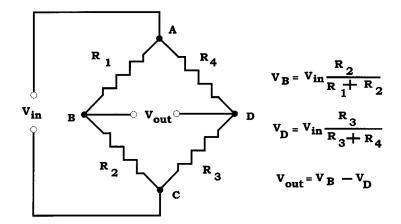
unknown voltage E_0 through the use of a variable resistor R_m . • At balance point, current through the galvanometer is zero.

Null Method:

• $V_{out} = 0 \longrightarrow i_q = 0 \Longrightarrow \frac{R_2}{R_1} = \frac{R_3}{R_4}$

Voltage-balancing Potentiometer Circuit

• If the resistor R_2 varies with changes in the measured physical variable, one of the other arms of the bridge can be adjusted to null the circuit and determine the resistance. The balancing mechanism may be accomplished manually or automatically through a closed loop controller circuit. The values of the other resistors must be precisely known.


Deflection Method:

- Used for dynamic signals where time is insufficient for balancing.
- Galvanometer/detector deflection indicates the deviation at one of the arms (transducer arm) from some balanced condition.
- Bridge output may be measured by:
 - 1 Low-impedance device → Current-sensitive circuit.
 - ② High-impedance device → Voltage-sensitive circuit.

- resistance R_m , while the variable contact is connected to a

Wheatstone Bridge Circuit

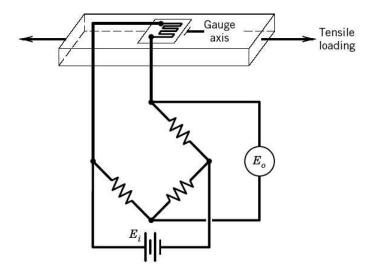
e671.eps

WB Circuit: Deflection Method

© Prof. Dr. M. Zahurul Haq (BUET)

Voltage-sensitive Circuit: V_{out} is measured by high impedance device. At balanced condition, $V_{out} = 0$. If $R_2 \to R_2 + \Delta R_2$. $\Rightarrow \frac{V_{out}}{V_{in}} = \frac{R_2 + \Delta R_2}{R_1 + R_2 + \Delta R_2} - \frac{R_3}{R_3 + R_4} = \frac{\Delta R_2 / R}{4 + 2(\Delta R_2 / R)} \iff R_1 = \cdots = R_4 = R$

Current-sensitive Circuit: i_g is measured by galvanometer with R_g . $\Rightarrow i_g = \frac{V_{out}}{R_{TH} + R_g} = \frac{V_{out}}{C} (R_2 R_4 - R_1 R_3)$ $C = R_1 R_2 (R_3 + R_4) + R_3 R_4 (R_1 + R_2) + R_g (R_1 + R_2 + R_3 + R_4)$ At null position $\Rightarrow R_2 R_4 = R_1 R_3 : i_g = 0$ If transducer resistance, $R_2 \to R_2 + \Delta R_2 \implies i_g \to \Delta i_g$. $\Rightarrow \Delta i_g = \frac{V_{out}}{C} \left[(R_2 + \Delta R_2) R_4 - R_1 R_3 \right] = \frac{V_{out}}{C} R_4 \Delta R_2$


Basic Input Circuits

→ Homework: Example 4.4, 10.6 & 10.7 (Holman)

→ Homework: Example 6.4 & 6.5 (Figliol

ME 361

Strain Gauge using Wheatstone Bridge

e677.eps

©Prof. Dr. M. Zahurul Haq (BUET)

Basic Input Circuits

ME 361

1 10 / 10