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Basic System Models

� Modelling is the process of representing the behaviour of a system

by a collection of mathematical equations & logics. It is

comprehensively utilized to study the response of any system.

� Response of a system is a measure of its fidelity to its purpose.

� Simulation is the process of solving the model and it is performed

using computer(s).

� Equations are used to describe the relationship between the input

and output of a system.

Input =⇒ Governing Equations =⇒ Output

� Analogy approach is widely used to study system response.
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Mechanical System Elements

Mechanical System Elements: (a) Spring

k Spring

+ ve

x(t)
f(t)

x(t)

Spring

f(t)

x(t)

T848

f (t) = kx (t)

F ≡ Force (tension or compression),

x ≡ Displacement (extension or compression),

k ≡ Spring constant. The bigger the value of k the greater

the forces required to stretch or compress the spring and

so the greater the stiffness.
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Mechanical System Elements

... (b) Dashpot/Damper

Damper

b

+ ve

x(t)
ẋ(t)

f(t)
x(t)

Damper

f(t)

x(t)

T849

f (t) = −bv = −b dx
dt

F ≡ Force opposing the motion at velocity v ,

b ≡ Damping coefficient. Larger the value of b the greater

the damping force at a particular velocity.

c


 Dr. Md. Zahurul Haq (BUET) Response of Measuring Systems, System DynamicsME 361 (2019) 5 / 37

Mechanical System Elements

... (c) Mass

f(t)

m

+ ve

x(t)
ẋ(t)
ẍ(t)

m

ẍ(t)
T850

f (t) = ma = m dv
dt = m d2x

dt2

F ≡ Force required to cause acceleration, a ,

m ≡ Mass of the element that is distributed throughout

some volume. However, in many cases, it is assumed

to be concentrated at a point.
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Mechanical System Elements

� Spring stores energy when stretched, and the energy is released

when it springs back to its original state.

E =
1

2

f 2

k

� Energy is stored in mass when it is moving with a velocity, v , the

energy being referred to as kinetic energy.

E =
1

2
mv2

� Dashpot dissipates energy as heat rather than storing it, and

dissipated power, P depends on the velocity, v .

P = bv2
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General System Modelling

Step and Harmonic Input

� step function: f (t) =

{
0 at t ≤ 0

A for t > 0

� harmonic function: f (t) =

{
0 at t ≤ 0

A sinωt for t > 0

0

0

A

(b) Harmonic input(a) Step input

f (
t)

t

Input, f(t)

0

0

A
f(t)

f (
t)

t

T= 2 /

T854

Step and harmonic inputs are widely used to analyse system response.
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General System Modelling

Modelling of a General Measurement System

The response of a measurement system, i.e., output, x (t), when

subjected to an input forcing function, f (t), may be expressed by a

linear ordinary differential equation with constant coefficients of the

form:

an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · · + a2

d2x

dt2
+ a1

dx

dt
+

0th order︷ ︸︸ ︷
a0x = f (t)

︸ ︷︷ ︸
1st order︸ ︷︷ ︸

2nd order

f (t) ≡ Input quantity imposed on the system,

x (t) ≡ Output or the response of the system,

a ’s ≡ Physical system parameters, assumed constants.

# Order of a system is designated by the order of the D.E.
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General System Modelling

Zeroth Order System

a0x = f (t) :=⇒ x (t) = k f (t)

� k ≡ 1
ao

≡ Static sensitivity or gain: the scaling factor between the

input and the output. For any-order system, it always has the

same physical interpretation, i.e., the amount of output per unit

input when the input is static and under such condition all the

derivative terms of general equation are zero.

� No equilibrium seeking force is present.

� Output follows the input without distortion or time lag.

� System requires no additional dynamic considerations.

� Represents ideal dynamic performance.

� Example: Potentiometer, ideal spring etc.
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General System Modelling

0

0

A

Response, x(t)

(b) Harmonic input(a) Step input

f (
t)

t

Input, f(t)

0

0

A

x(t)

f(t)

f (
t)

t

T855

Zero-order instrument’s response for step and harmonic inputs (for

k = 0.75).
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First Order System

First Order System

a1
dx
dt + a0x = f (t) :=⇒ τ dx

dt + x = k f (t)

k ≡ 1/ao ≡ static sensitivity,

τ ≡ a1/ao ≡ time-constant.

ao ⇐⇒ dissipation (electric or thermal resistance).

a1 ⇐⇒ storage (electric or thermal capacitance).
# Example: Thermometer, capacitor etc.

� The time constant, τ has the dimension of time, while the static

sensitivity has the dimension of output divided by input.

� When τ → 0: the effect of the derivative terms becomes negligible

and the governing equation approaches to that of a zero-order

system.
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First Order System

◮ Consider a thermocouple initially at temperature, T is suddenly

exposed to an environment at T∞.

T864

� h ≡ convective heat transfer coefficient,

� A ≡ heat transfer surface area,

� m ≡ mass of mercury + bulb,

� C ≡ specific heat of mercury + bulb.

_Qin = hA [T∞ − T (t)] = mC
dT (t)

dt
:=⇒ τ

dT (t)

dt
+ T (t) = T∞

� Time constant, τ ≡ mC
hA

� Static sensitivity, k = 1.0

� m ↑ C ↑ h ↓ A ↓ =⇒ τ ↑

� Instruments with small τ  good dynamic response.
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First Order System

Response of a 1st Order System: Step Input

x = xo , f = 0 : t = 0; f (t) = A : t > 0

τ
dx

dt
+ x = k f (t)

=⇒ x (t) = (xo − Ak) exp(−t/τ)︸ ︷︷ ︸
transient response

+ Ak︸ ︷︷ ︸
steady−state response

◮ x (t → ∞) = Ak = x∞ ⇐= Steady State Response

◮ Error, em = x∞ − x (t) = (x∞ − xo)e
−t/τ

◮ Non-dimensional Error, em/(x∞ − xo) = e−t/τ
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First Order System

. . . contd

◮ Non-dimensional response, M (t) = x (t)−xo

x∞−xo
= 1.0 − exp(−t/τ)
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T856
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First Order System

. . . contd.

� Time Constant, τ - time required to complete 63.2% of the process.

� Rise Time, tr - time required to achieve response from 10% to 90%

of final value.

# For first order system, tr = 2.31τ − 0.11τ = 2.2τ.

� Settling Time, ts - the time for the response to reach, and stay

within 2% of its final value.

# For first order system, ts = 4τ.
� Process is assumed to be completed when t ≥ 5τ.

� Faster response is associated with shorter τ.
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First Order System

Response of a 1st Order System: Harmonic Input

If the governing equation for first-order system is solved for harmonic

input and x |t=0 = 0, the solution is:

x (t)

Ak
=

ωτ

1 + (ωτ)2
exp(−t/τ)

︸ ︷︷ ︸
transient response

+
1

√

1 + (ωτ)2
sin(ωt + φ)

︸ ︷︷ ︸
steady−state response

where, φ ≡ tan−1(−ωτ) ≡ phase lag. Hence, time delay, ∆t , is

related to phase lag as:

∆t =
φ

ω

For ωτ >> 1, response is attenuated and time/phase is lagged from

input, and for ωτ << 1, the transient response becomes very small and

response follows the input with small attenuation and time/phase lag.
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First Order System

� Ideal response (without attenuation and phase lag) is obtained

when the system time constant, τ is significantly smaller than the

forcing element period, T ≡ 2π/ω.

� As t → ∞, the steady-state solution:

x (t)|s =
Ak

√

1 + (ωτ)2
sin(ωt + φ) = Ga f (t)∠φ

Hence, Ga ≡ k/
√

1 + (ωτ)2 ≡ steady-state gain.

� The attenuated steady-state response is also a sine wave with a

frequency equal to the input signal frequency, ω, and it lags

behind the input by phase angle, φ.
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First Order System

Thermometer (τ = 10s), initially at 0oC

(ω = 0.25, T = 8π, Ga = 0.37).
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x(t) = f(t) Ga
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T857
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First Order System
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Effects of time constant on system response.
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First Order System

. . . contd.

Unit τ [s] τ/T φ [deg] ∆t [s] Ga

01 01 0.04 -14.0 -0.98 0.97

02 05 0.2 -51.3 -3.58 0.62

03 50 2.0 -85.4 -5.96 0.08

� Response to harmonic input is

� at same frequency,

� with a phase shift (time lag), and

� reduced amplitude.

� The larger the time constant, the greater the phase lag &

amplitude decrease (attenuation).
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First Order System Transfer Function

Transfer Function (TF)

� Transfer function of a linear system, G(s), is defined as the ratio

of the Laplace transform (LT) of the output variable,

X (s) ≡ L{x (t)}, to the LT of the input variable, F (s) ≡ L{f (t)},
with all the initial conditions are assumed to be zero. Hence,

G(s) ≡ X (s)

F (s)

◦ The Laplace operator, s ≡ σ + jω, is a complex variable. For

steady-state sinusoidal input, σ = 0, and system response can be

evaluated by setting s = jω.
◦ Amplitude gain, Ga(ω) ≡ |G(jω)|

◦ Phase lag, φ(ω) ≡ ∠G(jω)

F (s) −→ G(s) −→ X (s) :=⇒ x (t) = f (t)× Ga∠φ
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First Order System Transfer Function

Time-domain Frequency-domain

Differential Equation Algebraic Equation

Input, f(t)

Output, x(t)

Input, F (s)

Output, X(s)

L{·}

L−1{·}

Calculus Algebra
⊲ Multiplication
⊲ Division
⊲ Exponentiation

⊲ Addition
⊲ Subtraction
⊲ Multiplication

T861
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First Order System Transfer Function

Important Laplace Transform Pairs

f (t) F (s)

δ(t) 1

tn n
sn+1

Step function, A A/s

e−at 1
s+a

sinωt ω
s2+ω2

cosωt s
s2+ω2

f ′(t) sF (s) − f (0)

f ′′(t) s2F (s) − sf (0) − f ′(0)
ωn√
1−ζ2

e−ζωn t sinωn

√
1 − ζ2 t , ζ < 1 ω2

n
s2+2ζωn s+ω2

n
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First Order System Transfer Function

Bode Diagram

Bode diagram is a pair of graphs which consists of two plots:

1 Logarithmic gain, L(ω) ≡ 20 log10 Ga(ω) vs. log10(ω), and

2 Phase angle, φ(ω) vs. log10(ω)

The vertical scale of the amplitude Bode diagram is in decibels (dB),

where a non-dimensional frequency parameter such as frequency ratio,

(ω/ωn ), is often used on the horizontal axis.
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First Order System Transfer Function

TF of a 1st Order System

τ
dx

dt
+ x = k f (t)

�

dnx
dtn =⇒ snX (s), f (t) =⇒ F (s).

⇒ τsX (s) + X (s) = k F (s)

F (s) ==⇒ k

τs+1 ==⇒ X (s)

� s ⇐= jω

� Ga = |G(jω)| =
∣

∣

∣

k

jωτ+1

∣

∣

∣
= k√

1+(ωτ)2

� φ = ∠G(jω) = tan−1(−ωτ)
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First Order System Transfer Function

Bode Diagram of a 1st Order System
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Second Order System

Second Order System

f(t) f(t)

kx(t) bẋ(t)

mm

k

Damper

b
Spring

+ ve

x(t)
ẋ(t)
ẍ(t)

f(t) ≡ forcing function

m ≡ mass

k ≡ spring constant

b ≡ damping constant

(a) (b)

m

ẍ(t)

T851

f − kx − c
dx

dt
= m

d2x

dt2
=⇒ m

d2x

dt2
+ c

dx

dt
+ kx = f

ωn ≡
√

k
m ⇐⇒ undamped natural frequency (rad/s)

cc ≡ 2
√

mk ⇐⇒ critical damping coefficient

ζ ≡ c/cc ⇐⇒ damping ratio
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Second Order System

TF of a 2nd Order System

a2
d2x
dt2

+ a1
dx
dt + aox = f (t) :=⇒ 1

ω2
n

d2x
dt2

+ 2 ζ
ωn

dx
dt + x = k f (t)

where,

k ≡ 1/ao ≡ static sensitivity,

ωn ≡
√

ao
a2

≡ undamped natural frequency,

ζ ≡ a1
2
√

aoa2
≡ dimensionless damping ratio.

� G(s) = 1/k
1

ω2
n
s2+2 ζ

ωn
s+1

=
ω2

n/k
s2+2ζωn s+ω2

n

� G(jω) =
1/k

[

1−
(

ω

ωn

)2
]

+j
[

2ζ ω

ωn

]

� Ga = |G(jω)| =
1/k

√

[

1−
(

ω

ωn

)2
]2

+4ζ2
(

ω

ωn

)2

� φ = ∠G(jω) = tan−1



−
2ζ ω

ωn
[

1−
(

ω

ωn

)2
]




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Second Order System

Response of a 2nd Order System: Step Input

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
 = 0, 0.1, 0.4, 0.7, 1.0, 2.0

 = 0

x 
(t)

/A
k

nt

 = 2.0

T859

c


 Dr. Md. Zahurul Haq (BUET) Response of Measuring Systems, System DynamicsME 361 (2019) 30 / 37

Second Order System

. . . contd.
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Second-order under-damped response specifications.
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Second Order System

. . . contd.

� Steady state position is obtained after a long period of time.

� Under-damped system (ζ < 1): response overshoots the

steady-state value initially, & then eventually decays to the

steady-state value. The smaller the value of ζ, the larger the

overshoot. The transient response oscillates about the

steady-value and occurs with a period,Td , given by:

Td ≡ 2π

ωd
: ωd ≡ ωn

√

1 − ζ2
� Critical damping (ζ = 1): an exponential rise occurs to approach

the steady-state value without any overshoot.

� Over-damped (ζ > 1): the system approaches the steady-state

value without overshoot, but at a slower rate.
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Second Order System

Response of a 2nd Order System: Harmonic Input
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Second Order System

. . . contd.

� System has a good linearity for low damping ratios and up to a

frequency ratio of 0.3 since the amplitude gain is very nearly unity

(Ga ≃ 1).

� For large values of ζ, the amplitude is reduced substantially.

� The phase shift characteristics are a strong function of frequency

ratio for all frequencies.

� As a general rule of thumb, the choice of ζ = 0.707 is optimal since

it results in the best combination of amplitude linearity and phase

linearity over the widest range of frequencies.
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Measuring System Response

Measuring System Response

Response is a measure of a system’s fidelity to purpose.

1 Amplitude response:

� A linear response to various input amplitudes within range.

� Beyond the linear range, the system is said to be overdriven.

2 Frequency response: is the ability of the system to treat all

frequencies the same so that the gain amplitude remains the same

over the frequency range desired.

3 Phase response: is important for complex waveforms. Lack of

good response may result in severe distortion.

4 Delay, Rise time, Slew rate:

� Delay or rise time is required to respond to an input quantity.

� Slew rate is the maximum applicable rate of change.
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Measuring System Response

Spring-mass-damper system & analogous RLC circuit

f(t)

m

k

Damper

b
Spring

+ ve

x(t)
ẋ(t)
ẍ(t)

f(t) ≡ forcing function (N)
m ≡ mass (kg)
k ≡ spring constant (N/m)
b ≡ damping constant (N.s/m)
x ≡ displacement (m)
ẋ ≡ dx/dt ≡ velocity (m/s)

v(t) ≡ applied voltage (V)
L ≡ inductance (H)
C ≡ capacitance (F)
R ≡ resistance (Ω)
q ≡ charge (C)
i ≡ dq/dt ≡ current (A)

md2x
dt2

+ bdx
dt
+ kx = f(t)

Ld2q
dt2

+ Rdq
dt
+ 1

C
q = v(t)

L ∼ m,R ∼ b, 1
C

∼ k, v ∼ f

1

ω2
n

d2x
dt2

+ 2 ζ
ωn

dx
dt + x = κf(t)=⇒

L

v(t)

R

C

InductorResistor

Capacitor
i

T852
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Measuring System Response
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