

- Measuring instruments are designed to generate a fixed and reproducible magnitude of the measurand which is expressed by a number followed by the matching unit, e.g., a length of 2.5 m.
- Measurement provides quantitative information on the actual state of the measurand that otherwise could only be estimated.
- Scope of applications of measurements:
 - To maintain quality control and quality assurance in production;
 - To comply with and enforcing laws and regulations;
 - To conduct basic/applied research and development, in science and engineering;

ME 361 (2019)

3/17

• To develop, maintain and compare international and national physical reference standards, reference materials, and also to achieve traceability to national standards.

© Dr. Md. Zahurul Haq (BUET) Basic Principles of Measurements

- Metrology Basic and General Concepts and Associated Terms (VIM), defines measurement as: process of experimentally obtaining one or more quantity values that can reasonably be attributed to a quantity.
- Measurement is an experimental science and most experiments are classified into following four categories:
 - **1** *Variational experiments*: carried out with an objective to establish the mathematical relations between the experiment's variables.
 - 2 Validation experiments: carried out to validate a specific hypothesis.
 - 3 *Pedagogical experiments*: aimed to demonstrate something that is already known.
 - 4 *Exploration experiments*: conducted to explore an idea or possible theory.

© Dr. Md. Zahurul Haq (BUET) Basic Principles of Measurements

2/17

Components of Measurement System

Components of a General Measurement System

Components of Measurement System

Sensor-Transducer Stage

11/17

- Sensor: is a physical element that employs some natural phenomenon to sense the physical variable to be measured; e.g. accelerometer, barometer, gyroscope.
- Transducer: converts the sensed information into a detectable signal; e.g. thermistor, thermocouple etc.
- Three basic phenomenon in effect in any sensor operation:
 - Change (or the absolute value) in the measurand causes an equivalent change in the sensor property, e.g., displacement, voltage, resistance, capacitance, inductance, magnetic flux, etc.
 - Ochange in the sensor property is converted into a more usable form, e.g., temperature change results in the change in generated voltage by a thermocouple.
 - S Exposure of sensor to the effects of measurement environment may lead to some exchange of energy to cause loading effect; e.g., a thermometer when inserted into a cup of tea takes some heat from it to cause a difference between true and indicated values.

© Dr. Md. Zahurul Haq (BUET) Basic Principles of Measurements ME 361 (2019)

Components of Measurement System

- Sensor-Transducer stage: Sensor is directly affected by the measurand, while *transducer* transducers the sensed information to provide an output quantity having a specified relation to the input quantity. Examples of sensors-transducer include thermocouple, strain gauge, manometer, load-cell, etc.
- Intermediate or signal processing stage: transduced signal is modified by one or more basic operations, such as amplification, filtering, differentiation, integrating or averaging, etc.
- 3 Terminating or readout stage: acts to indicate, record or control the variable being measured. Output may be *analogue* or *digital*.
- ② Feedback control stage: In those measurement systems involved in process control, feedback control stage contains a controller that interprets the measured signal and makes a decision regarding the control of the process.

© Dr. Md. Zahurul Haq (BUET) Basic Principles of Measurements

Calibration & Standards

Calibration

10/17

ME 361 (2019)

- Calibration affords the opportunity to check the instrument against a known standard and subsequently to reduce errors in accuracy.
- Calibration procedures involve a comparison of the particular instrument with either:
 - **1** a primary standard,
 - 2 a secondary standard with a higher accuracy that the instrument to be calibrated, or
 - **3** a known input source.
- Example: Calibration of a flow-meter
 - Comparison with a standard flow-measurement facility.
 - Comparison with a flow-meter of known accuracy, which is higher than the instrument to be calibrated.
 - Using indirect measurements e.g. weighing certain amount of water in a tank and recording the time elapsed for this quantity to flow

© Dr. Md. Zahurul Haq (BUET) Basic Principles of Measurements

	Hi	erarchy of Standards	
Primary st	andard	Maintained as absolute unit stand	
Transfer st	andard	Used to calibrate local standards	
Local stan	dard	Used to calibrate w	vorking standards
Working s	standard Used to calibrate local instruments		
Exar	nple of a 7 Stand	<i>'emperature Standard</i> lard	Traceability
Exar	nple of a 7 Stand	<i>Temperature Standard</i> lard	Traceability
<i>Exar</i> Level	n <u>ple of a 7</u> Stand	<i>Temperature_Standard</i> lard Method	<i>Traceability</i> Uncertainty [°C] ⁱ
<i>Exar</i> Level Primary	nple of a 7 Stand Fixed ther	<i>Temperature Standard</i> lard Method modynamic points	<i>Traceability</i> Uncertainty [°C] ⁴ 0
<i>Exar</i> Level Primary Transfer	<i>nple of a 7</i> Stand Fixed ther Platinum r	<i>Temperature Standard</i> lard Method modynamic points resistance thermometer	$\frac{Traceability}{\text{Uncertainty } [°C]^{t}}$ 0 ± 0.005
<i>Exar</i> Level Primary Transfer Working	<i>mple of a T</i> Stand Fixed ther Platinum r Platinum r	Temperature Standard lard Method modynamic points resistance thermometer resistance thermometer	$\frac{Traceability}{Uncertainty [°C]^4}$ 0 ± 0.005 ± 0.05

has been independently assessed and audited to show that it is competent to carry out specific tests and calibrations in that field © Dr. Md. Zahurul Haq (BUET) Basic Principles of Measurements ME 361 (2019) 14/17

International system of units (SI)

Base SI units

There are seven base units of the SI, in terms of which all physical quantities can be expressed.

SI					
Quantity	SI unit	Symbol			
Length	metre	m			
Mass	kilogram	kg			
Time	second	S			
Electric current	ampere	A			
Temperature	kelvin or degree Celsius	K or °C			
Luminous intensity	candela	cd			
Amount of substance	mole	mol			

T879

International system of units (SI)

All measurements can be expressed using combinations of the seven base units (and angle if needed). These combinations are called derived units.

	Derived units - examples			
	Quantity	Unit	Symbol	
	Area	square metre	m ²	
	Volume	cubic metre	m ³	
	Speed	metre per second	m s ⁻¹ or m/s	
	Acceleration	metre per second per second	m s ⁻² or m/s ²	
	Force	newton	N	
	Energy	joule	J	
T880	Power	watt	W	
c) Dr. Mo	l. Zahurul Haq (BUET)	Basic Principles of Measurements	ME 361 (2019)	