Assignment I [2021]
 ME 307: Heat Transfer Equipment Design

1. For heat exchanger operation with equal values of heat capacity rates $\left(C=C_{a}=C_{b}\right)$, show that,

$$
T_{a, o}=T_{a, i}-\frac{T_{a, i}-T_{b, i}}{C / U A+1}
$$

In a counter-flow heat exchanger, cold water enters at $30^{\circ} \mathrm{C}$ at a rate of $0.5 \mathrm{~kg} / \mathrm{s}$, and hot water enters at $65^{\circ} \mathrm{C}$ at the same flow rate. If $U A$ of the heat exchanger is $4 \mathrm{~kW} / \mathrm{K}$, estimate the $\Delta T_{L M}$ and the heat exchange rate.
2. For phase-change heat transfer in heat exchanges, show that,

$$
T_{o}=T_{i}+\left(T_{\text {sat }}-T_{i}\right)(1-\exp (-U A / C))
$$

Water is heated from 25 to $50^{\circ} \mathrm{C}$ by steam condensing at $110^{\circ} \mathrm{C}$. If the water flow rate remains constant, but its inlet temperature drops to $15^{\circ} \mathrm{C}$, what will its new outlet temperature be?
3. A flow rate of $2 \mathrm{~kg} / \mathrm{s}$ of water, $C_{p}=4.19 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$, enters one end of a counterflow heat exchanger at a temperature of $20^{\circ} \mathrm{C}$ and leaves at $40^{\circ} \mathrm{C}$. Oil enters the other side of the heat exchanger at $60^{\circ} \mathrm{C}$ and leaves at $30^{\circ} \mathrm{C}$. If the heat exchanger were made infinitely large while the entering temperatures and flow rates of water and oil remained constant, what would be the rate of heat transfer in the heat exchanger be?
4. A counterflow heat exchanger cools $5 \mathrm{~kg} / \mathrm{s}$ of oil, $C_{p}=2.4 \mathrm{~kJ} / \mathrm{kg}$.K, with water that has a flow rate of $7.5 \mathrm{~kg} / \mathrm{s}$. The specific heat of water is $4.19 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$. Under the original operating conditions, the oil is cooled from 75 to $40^{\circ} \mathrm{C}$ when water enters at $25^{\circ} \mathrm{C}$. To what temperature will the oil be cooled if it enters at $65^{\circ} \mathrm{C}$ and if there is no change in the in entering water temperature, the flow rates of either fluid, or the heat transfer coefficients?
5. A double-pipe heat exchanger serves as an oil cooler with oil flowing in one direction through the inner tube and cooling water in the opposite direction through the annulus. The oil flow rate is $0.63 \mathrm{~kg} / \mathrm{s}$, the oil has a specific heat capacity of $1.68 \mathrm{~kJ} / \mathrm{kg}$, the water has flow rate $0.5 \mathrm{~kg} / \mathrm{s}$, and its specific heat is $4.19 \mathrm{~kJ} / \mathrm{kg}$.K. In a test of a prototype, oil entering at $78^{\circ} \mathrm{C}$ was cooled to $54^{\circ} \mathrm{C}$ when the entering water temperature was at $30^{\circ} \mathrm{C}$. The possibility of increasing the area of the heat exchanger is to be considered. If the flow rates, fluid properties and entering temperatures remain unchanged, what will be the expected outlet temperature of the oil if the area is increased by 20% ?
6.

To ventilate a factory building, $5 \mathrm{~kg} / \mathrm{s}$ of factory air at $27^{\circ} \mathrm{C}$ is exhausted, and an identical flow rate of air at $-12^{\circ} \mathrm{C}$ is introduced to take its place. To recover some of the heat of the exhaust air, heat exchangers are placed in the exhaust and the ventilation air ducts, and $2 \mathrm{~kg} / \mathrm{s}$ of water is pumped between the two heat exchangers, The UA value of both of these counterflow heat exchangers is $6.33 \mathrm{~kW} / \mathrm{K}$. What is the temperature of air entering the factory?

7. Light lubricating oil ($c_{p}=2090 \mathrm{~J} / \mathrm{kgK}$) is cooled by allowing it to exchange energy with water in a small heat exchanger. The oil enters and leaves the heat exchanger at 375 and 350 K , respectively, and flows at a rate of $0.5 \mathrm{~kg} / \mathrm{s}$. Water at 280 K is available in sufficient quantity to allow $0.201 \mathrm{~kg} / \mathrm{s}$ to be used for cooling purposes. The overall heat-transfer coefficient may be taken as $250 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the required heat-transfer area for
(a) counterflow
(b) parallel-flow
(c) crossflow, water-mixed
(d) shell-and-tube with four tube-side passes, oil being the tube-side fluid
8. In the energy exchange between water and lubricating oil as considered in the above example, a crossflow heat exchanger with the shell-side fluid (water) mixed is constructed with a heat-transfer area of $1.53 \mathrm{~m}^{2}$. A new pump is attached to the water supply line, enabling the water flow rate to be increased to $1000 \mathrm{~kg} / \mathrm{h}$. What will be the exit temperatures of the water and oil for the new operating conditions?
9. The condenser of a steam power plant operates at a pressure of 7.38 kPa . Steam at this pressure condenses on the outer surfaces of horizontal tubes through which cooling water circulates. The outer diameter of the pipes is 3 cm , and the outer surfaces of the tubes are maintained at $30^{\circ} \mathrm{C}$. Determine
(a) rate of heat transfer to the cooling water circulating in the tubes
(b) rate of condensation of steam per unit length of a horizontal tube

If 12 horizontal tubes arranged in a rectangular array of 3 tubes high and 4 tubes wide, recalculate the values.
10. A heat exchanger is to be designed to cool $9.0 \mathrm{~kg} / \mathrm{s}$ an engine oil $\left[c_{p}=2100 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right]$ from $90^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ with cooling water [$c_{p}=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$] entering the tube side at $30^{\circ} \mathrm{C}$ at a rate of $4.5 \mathrm{~kg} / \mathrm{s}$. Given, $U_{o}=500 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$. Estimate heat transfer area,
(a) for one shell pass and two tube pass heat exchanger.
(b) for cross-flow heat exchanger where both fluids are unmixed.
(c) for cross-flow heat exchanger where one fluid is unmixed.
11. In a CFHX, exhaust gases flow through the tubes, and the cold intake air flow across these tubes. The wall thickness of the tubes is negligible. The heat exchanger do be designed with mass flow rates $\dot{m}_{h}=\dot{m}_{c}=10 \mathrm{~kg} / \mathrm{s}$, heat transfer coefficients $h_{h}=h_{c}=100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and three end temperatures $T_{h i}=350^{\circ} \mathrm{C}, T_{c i}=25^{\circ} \mathrm{C}$, and $T_{c o}=150^{\circ} \mathrm{C}$. Estimate:
(a) the heat transfer area of the heat exchanger, and
(b) the new outlet temperatures after doubling the flow of the hot fluid.
12. Oil is to be heated to $45^{\circ} \mathrm{C}$ from $30^{\circ} \mathrm{C}$ using hot water at $100^{\circ} \mathrm{C}$. Oil flow rate is $0.03 \mathrm{~kg} / \mathrm{s}$ in the annulus, while water flow rate is $0.5 \mathrm{~kg} / \mathrm{s}$. The heat exchanger is made of $2 \times 11 / 4$ std type M copper tubing. Use appropriate fouling factors, size the DPHX.
13. In a cross-flow recuperator with both fluids unmixed, hot air flows through the tubes, and the cold intake air flow across these tubes. The wall thickness of the tubes is negligible. The heat exchanger do be designed with mass flow rates $\dot{m}_{h}=\dot{m}_{c}=10 \mathrm{~kg} / \mathrm{s}$, heat transfer coefficients $h_{h}=h_{c}=$
$150 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, and three end temperatures $T_{h i}=425^{\circ} \mathrm{C}, T_{c i}=25^{\circ} \mathrm{C}$, and $T_{c o}=210^{\circ} \mathrm{C}$. We wish to determine:
(a) the heat transfer area of the heat exchanger, and
(b) the new outlet temperatures after doubling the flow of (1) the hot fluid, (2) the cold fluid, while maintaining the same inlet temperatures.
14. A heat exchanger (condenser) using steam from the exhaust of a turbine at a pressure of 4.0-in. Hg abs. is to be used to heat $11500 \mathrm{~kg} / \mathrm{h}$ of water from $15.6^{\circ} \mathrm{C}$ to $43.3^{\circ} \mathrm{C}$. The exchanger is to be sized for one shell pass and four tube passes with 60 parallel tube circuits of 0.995 -in.-ID and $1.125-\mathrm{in}$.-OD brass tubing ($k=104 \mathrm{~W} / \mathrm{mK}$). For the clean exchanger the average heat transfer coefficients at the steam and water sides are estimated to be 3400 and $1700 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, respectively. Calculate the tube length required for long-term service.
15. Hot oil is to be cooled by water in a 1 -shell-pass and 8 -tube-passes heat exchanger. The tubes are thin-walled and are made of copper with an internal diameter of 1.4 cm . The length of each tube pass in the heat exchanger is 5 m , and the overall heat transfer coefficient is $310 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Water flows through the tubes at a rate of $0.2 \mathrm{~kg} / \mathrm{s}$, and the oil through the shell at a rate of $0.3 \mathrm{~kg} / \mathrm{s}$. The water and the oil enter at temperatures of $20^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$, respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil.

