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Refrigerators, Air-conditioners & Heat Pumps
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970 (a) Refrigerator

° COPp =3
o COPHP = COPR
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(b) Air conditioner

COPuc = WQ—;C
+1
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(c) Heat pump

COPyp = g—;
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Refrigeration Capacity/Performance

@ 1 ton refrigeration: heat absorbed by 1 ton (2000 1b) of ice melting
at 0°C in 24 hours.

o 1 ton refrigeration (TR) = 3.516 kW = 12000 BT'U/hr = 200

BTU/min
o Coefficient of Performance, COPr = %m

o kW /ton = power required per ton of refrigeration

__ 3.516
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Basic Refrigeration Cycle Reversed Carnot Cycle

Reversed Carnot Cycle
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Basic Refrigeration Cycle Reversed Carnot Cycle

> Example:
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Basic Refrigeration Cycle Reversed Carnot Cycle

Problems: Wet Compression in Carnot Cycle

@ During compression, droplets in liquid are vaporised by the
internal heat transfer process which requires finite time.
High-speed compressors are susceptible to damage by liquid
because of the short time available.

@ In wet compression, the droplets of the liquids may wash the
lubricating oil from the walls of the cylinder, accelerating wear.
Dry compression takes place with no droplets and is preferable.

@ Liquid refrigerants may be trapped in the head of reciprocating
compressor by the rising piston, possibly damaging the valves or
the cylinder head.
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Basic Refrigeration Cycle Reversed Carnot Cycle

Problems: Expansion Process in Carnot Cycle

Carnot cycle demands that the expansion take place isentropically and
that the resulting work be used to help drive the compressor. Practical
difficulties, however, militate against the expansion engine:

@ the possible work that can be derived from the engine is small
fraction that must be supplied to the compressor.

@ practical problems such as lubrication intrude when a fluid of two
phases drives the engine.

@ the economics of the power recovery have in past not justified the
cost of the expansion engine.

& A throttling device, such as a valve or other restriction, is almost
universally used for this purpose.
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Basic Refrigeration Cycle

Ideal Vapour Compression Refrigeration Cycle

Basic Refrigeration System using 2-Phase Refrigerant

Basic Refrigeration Cycle Ideal Vapour Compression Refrigeration Cycle

Ideal Vapour Compression Refrigeration Cycle
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Basic Refrigeration Cycle

Ideal Vapour Compression Refrigeration Cycle

Saturation curve:

Critical pressure o Condensing
/P liquid vapour pressure
Saturation curve
___Condensing
Condensation : temperature
Liquid |
o i
= 1
Y E |
5 g L
P S g
S Vapour >
e
w /
Evaporation %
h
T255 Entropy, s
1256

© Dr. Md. Zahurul Hag (BUET)

Refrigeration Cycles

D)

ME 203 (2017) 11/ 24

Basic Refrigeration Cycle Ideal Vapour Compression Refrigeration Cycle

Processes of Vapour Compression Refrigeration System

QL = Qq = m(hy — hy)
QH = Q3 = m(hy — h3)
Wi = Wipg=m(hy — )
COP = QL/ Wi

T257

1 — 2: Isentropic compression, Peyap — Peond
2 — 3: Isobaric heat rejection, Qg
3 — 4: Isenthalpic expansion, Pcong — Pevap

4 — 1: Isobaric heat extraction, @y,
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Basic Refrigeration Cycle Ideal Vapour Compression Refrigeration Cycle

> Example: A theoretical single stage cycle using R134a as refrigerant
operates with a condensing temperature of 30°C and an evaporator
temperature of -20°C. The system produces 50 kW of refrigeration effect.

Estimate:
@ Coefficient of performance, COP

© Refrigerant mass flow rate,

QL

W;
COP

T257

© Dr. Md. Zahurul Haq (BUET)

Refrigeration Cycles

= Qa1 = m(hy — hy) =50 kW
~ m = 0.345 Kg/s «

= Wiz =m(hy — hy) =12.5 kW
— Q1) Win = 50.0/12.5 — 4.0 «
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Basic Refrigeration Cycle Ideal Vapour Compression Refrigeration Cycle

Effect of Evaporator Temperature
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Basic Refrigeration Cycle

Ideal Vapour Compression Refrigeration Cycle

Effect of Condenser Temperature

R134a: RE=50kW, T =-20°C
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Basic Refrigeration Cycle Ideal Vapour Compression Refrigeration Cycle

Effect of Evaporator & Condenser Temperatures
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Deviation from Simple Cycle

Deviations from Ideal Cycle

O Refrigerant pressure drop in piping, evaporator, condenser,
receiver tank, and through the valves and passages.

© Sub-cooling of liquid leaving the condenser.
© Super-heating of vapour leaving the evaporator.
© Compression process is not isentropic.
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Deviation from Simple Cycle

Super-heating & Sub-cooling

High pressure

T263 Entropy (kJ/kg-K)

@ Sub-cooling of liquid serves a desirable function of ensuring that
100% liquid will enter the expansion device.

@ Super-heating of vapour ensures no droplets of liquid being carried
over into the compressor.

@ Even through refrigeration effect is increased, compression work
greater & probably has negligible thermodynamic advantages.
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Deviation from Simple Cycle

> Example:

©

hi = h(P = 0.14 MPa, T = —10°C)
® hy = h(P = 0.80 MPa, T = 50°C)
o hg ~ hf,26°C

hy = hg

[

1258
® Q= (h1— hy) =158.53 kJ/kg
@ Win = (hy — h1) = 40.33 kJ/kg
® COPg= - =393 «

onc:%:93.6%<
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Deviation from Simple Cycle

> Example: A dual-evaporator refrigeration system: 7T» = -18.0°C, T =
4.0°C, T. = 30.0°C & 1. = 80%.
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Miscellaneous Refrigeration Systems

Vapour Absorption Refrigeration System
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Miscellaneous Refrigeration Systems
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Ammonia absorption refrigeration system
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Miscellaneous Refrigeration Systems

Vapour-Compression Heat Pump (HP) System
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i Qout = W + Qin
o COP|gp = % =1+ COP|ges
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Miscellaneous Refrigeration Systems

Gas Refrigeration System: Brayton Cycle
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