Refrigeration & Air-Conditioning Systems

Dr. Md. Zahurul Hag. Ph.D., CEA, FBSME, FIEB

Professor

Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000. Bangladesh

> zahurul@me.buet.ac.bd http://zahurul.buet.ac.bd/

ME 101: Introduction to Mechanical Engineering

http://zahurul.buet.ac.bd/ME101/

© Dr. Md. Zahurul Hag (BUET)

HV/AC

ME 101: 2022

1/37

ME 101: 2022

ME 101: 2022

Applications & Performance

Food Preservation by Refrigeration

- Preservation of perishables by refrigeration involves the use of low temperature as a means of eliminating or retarding the activity of spoilage agents.
- For storage, the product is chilled and stored at some temperature above its freezing point. Frozen storage requires freezing of the product and storage at some temperature between -12° to -23°C.
- Factors affecting the quality of frozen product:
 - Nature and composition of product to be frozen
 - Care in selecting, handling & preparing the product for freezing
 - Freezing method
 - Storage condition

Applications & Performance

Applications of Refrigeration System

- Domestic refrigeration
- 2 Commercial & Industrial refrigeration
 - Food storage & processing
 - Ice rinks
 - Low temperature liquid storage/transportation
 - De-waxing of oil
 - Separation and condensation of gases
 - Solidification and separation of solid
 - Low temperature testing
 - Removal of heat of reaction etc.
- Marine & transportation refrigeration
- 4 Comfort air-conditioning
- Industrial air-conditioning

© Dr. Md. Zahurul Hag (BUET)

HVAC.

Applications & Performance

Comfort vs. Industrial Air-conditioning

- Comfort air-conditioning is for human comfort. It involves control of space temperature, humidity, air-motion and cleaning/filtering of air.
- Industrial air-conditioning does not have the primary function of conditioning air for human comfort.
- Functions of industrial air-conditioning include:
 - control of moisture of hygroscopic materials.
 - govern the chemical/bio-chemical reaction rates.
 - limit the variation of size of precision manufacturing items because of thermal expansion and contraction.
 - provide clean, filtered air for production of quality products.
 - ensure space temperature/humidity/air-motion for production requirement.

© Dr. Md. Zahurul Haq (BUET) HVAC ME 101: 2022 © Dr. Md. Zahurul Haq (BUET)

Applications & Performance

Refrigeration Capacity/Performance Parameters

• 1 ton refrigeration (1 RT or TR): heat absorbed by 1 (short) ton (2000 lb) of ice uniformly melting at 0°C in 24 hours. One RT refrigeration system that can freeze 1 ton (2000 lb) of liquid water at 0°C into ice at 0°C in 24 hr.

$$1 RT = 3.516 kW = 12000 BTU/hr$$

Coefficient of Performance:

$$COP = \frac{Refrigeration \ Effect}{Net \ Work \ Required}$$

• kW/ton ⇒ power required per ton of refrigeration

$$kW/ton = \frac{3.516}{COP}$$

© Dr. Md. Zahurul Haq (BUET)

HVA

ME 101: 2022

5/37

Refrigeration Systems Refrigerants

Refrigerants are well known as the fluids providing a cooling effect during the phase change from liquid to vapour. These are used in refrigeration, air conditioning, and heat pump systems, as well as process systems.

Refrigeration Systems

Some Desirable Properties of Refrigerants

- High latent heat of vaporisation \Rightarrow less refrigerant flow required
- High suction gas density \Rightarrow small and compact equipment
- Low compression ratio ⇒ low power consumption and higher volumetric efficiency of compressors.
- Positive but not excessive pressures at evaporating and condensing conditions.
- Low condensing pressure ⇒ lighter compressors, piping etc.
- ullet High thermal conductivity \Rightarrow good heat transfer, reduced size of heat transfer equipment.
- Chemically stable, compatible with construction materials and miscible with lubricants.
- Non-corrosive, non-toxic, non-flammable and environmentally friendly.

© Dr. Md. Zahurul Haq (BUET)

HVAC

Refrigeration Systems

ME 101: 2022

17 / 37

Prefixes & Atoms in Refrigerants

Name	Prefix	Atoms Contained
Chlorofluorocarbon	CFC	Cl, F, C
Hydrochlorofluorocarbon	HCFC	H, Cl, F, C
Hydrobromofluorocarbon	HBFC	H, Br, F, C
Hydrofluorocarbon	HFC	H, F, C
Hydrocarbon	HC	Н, С
Perfluorocarbon	PFC	F, C
Halon	Halon	Br, Cl (in some), F, H (in some), C

Refrigeration Systems

Classifications of Refrigerants

A refrigerant may be a single chemical compound or a mixture (blend) of multiple compounds.

- Azeotropic Mixtures: these are blends of multiple refrigerants that
 evaporate & condense as a single substance & do not change their
 volumetric composition or saturation temperature when they
 evaporate or condense at a constant pressure.
- Zeotropic Mixtures: these are blends of multiple refrigerants that evaporate & condense as a single substance & <u>do change</u> their volumetric composition or saturation temperature when they evaporate or condense at a constant pressure.
- Blends: mixtures of two or more chemical compounds are blends.

© Dr. Md. Zahurul Haq (BUET)

HVAC

ME 101: 2022

18/3

Refrigeration Systems

Numbering of Refrigerants: Halocarbon/Hydrocarbon

- $CHCl_2CF_3 \rightarrow 3F + 1H + 2C \rightarrow R123$
- $\bullet \ \textit{CCI}_3\textit{F} \rightarrow 1\textit{F} + 0\textit{H} + 1\textit{C} \rightarrow \textit{R11}$
- $\bullet \ \textit{CHCIF}_2 \rightarrow 2\mathsf{F} + 1\mathsf{H} + 1\mathsf{C} \rightarrow \mathsf{R22}$
- $\bullet \ \textit{CH}_4 \rightarrow \textit{0F} + \textit{4H} + \textit{1C} \rightarrow \textit{R50}$
- $C_3H_8 \to 0F + 8H + 3C \to R290$

ME 101: 2022 19 / 37

Refrigeration Systems

Safety Requirements/Environmental Issues of Refrigerants

- According to ANSI/ASHRAE 34-1997, safety groups are classified as follows:
 - A1: lower toxicity & no flame propagation
 - A2: lower toxicity & lower flammability
 - A3: lower toxicity & higher flammability
 - B1 : higher toxicity & no flame propagation
 - B2: higher toxicity & lower flammability
 - B3 : higher toxicity & higher flammability
- Ozone Depletion Potential (ODP): of a refrigerant represents its
 effect on atmospheric ozone, and the reference point usually adopted
 is ODP = 1.0 fro CFC R11.
- Global Warming Potential (GWP): of a gas may be defined as the index comparing the climate impact on its emission to that of emitting the same amount of carbon dioxide. R134a has a GWP equivalent to 1300 kg CO₂.

21 / 37

© Dr. Md. Zahurul Haq (BUET) HVAC ME 101: 2022

